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MINIMAL SURFACES IN MANIFOLDS WITH S1 ACTIONS
AND THE SIMPLE LOOP CONJECTURE

FOR SEIFERT FIBERED SPACES

JOEL HASS

ABSTRACT. The Simple Loop Conjecture for 3-manifolds states that if a 2-

sided map from a surface to a 3-manifold fails to inject on the fundamental

group, then there is an essential simple loop in the kernel. This conjecture is

solved in the case where the 3-manifold is Seifert fibered. The techniques are

geometric and involve studying least area surfaces and circle actions on Seifert

Fibered Spaces.

1. Introduction. The Simple Loop Conjecture for 3-manifolds states the

following:

SIMPLE LOOP CONJECTURE. Let f:F->Mbea 2-sided map from a closed 2-

dimensional surface F to a 3-manifold M and let /#: ni(F) —* 7Ti(M) be the induced

map on the fundamental group. //ker(/#) ^ 1, then there is an essential simple

closed curve in ker(/#).

The analogous result for maps between two 2-dimensional surfaces was recently

solved by D. Gabai [Ga]. This paper will present a solution to the conjecture for

the case where M is a Seifert Fibered Space. This solution is actually a special

case of a more general result concerning minimal codimension-one submanifolds of

manifolds which admit a one-parameter group of isometries.

Throughout this paper we will assume that maps and manifolds are smooth.

An immersed surface is minimal if it has mean curvature zero. An immersed

codimension-one submanifold of a manifold is said to be 2-sided if its normal bundle

is trivial. We say that a submanifold is a strictly stable minimal submanifold if there

are no nearby submanifolds of smaller area, where by nearby we mean arbitrarily

close in the C° topology. Given a one-parameter group of isometries It, t G R, of a

manifold, we call a submanifold F vertical if it is everywhere tangent to the orbits,

and horizontal if each point x in F has an open neighborhood U in F such that

It (U) n U = 0 for |i| sufficiently small. Thus vertical submanifolds are invariant

under the isometries It while horizontal submanifolds are pushed off themselves

locally. The main theorem on minimal submanifolds is the following result:

THEOREM 1. Let M be a Riemannian n-manifold admitting a one-parameter

group of isometries and let F be a strictly stable 2-sided minimal codimension-one

submanifold immersed in M. Then F is either horizontal or vertical.

REMARKS. 1. No assumption is made about injectivity properties of ni(F).
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2. The theorem is false for 1-sided submanifolds. For example, it is possible to

construct embedded 1-sided nonorientable incompressible surfaces in certain Lens

spaces (those with nontrivial Z2-homology). One can minimize area in the isotopy

class of such surfaces [MY, HS] to obtain strictly stable nonorientable surfaces

in Lens spaces. A Lens space is a Seifert Fibered Space over the 2-sphere with

two exceptional fibers. Since horizontal surfaces in such a Seifert fibration are

automatically orientable, being branch covers of the 2-sphere, and since vertical

surfaces are compressible tori or Klein bottles, it follows that the theorem fails in

this context.

3. A similar result to Theorem 1 has been obtained independently by Gao [G].

Here is an outline of how the Simple Loop Conjecture for Seifert Fibered Spaces

follows from Theorem 1: An existence theorem for minimal surfaces establishes that

if a homotopy class of maps of a surface into a 3-manifold contains no essential sim-

ple loops with null-homotopic image, then one can find a least area surface in that

homotopy class. In most cases the natural locally homogenous metric that exists on

this Seifert Fibered Space is invariant under a one-parameter group of isometries,

and a least area map is then shown to be either horizontal or vertical. One can

then check that horizontal and vertical maps always inject into the fundamental

group. Some complications, due to the fact that one must sometimes pass to a

double cover of a Seifert Fibered Space to guarantee existence of a one-parameter

group of isometries, are then dealt with to complete the proof.

2. Results on minimal surfaces. The following lemma, sometimes known

as the maximal principle for minimal surfaces, describes the intersection of two

minimal surfaces near a point of tangency. Its proof is essentially the Hopf maximal

principle of partial differential equations, applied to the equation for the difference

of two minimal surfaces near a point of tangency [MY, FHS].

LEMMA 1. Let M be a Riemannian 3-manifold and let F\, Í2 be closed minimal

surfaces immersed in M. Suppose that .Fi and F¡ are tangent at a point P. Then

either F\ and F2 coincide on an open neighborhood of P or there is aC1 coordinate

chart (xl,x2,x3) about P in which F\ is given by x3 = 0 and F2 is given by x3 =

Real^z1 + ix2)n] for some n > 2.

We will use the following existence result.

LEMMA 2. Let M be an irreducible Riemannian 3-manifold with convex (possibly

empty) boundary, and let F be a closed surface. Let 7 — {f:F —► M\f is smooth

and homotopic to g, and ker(¡7#) contains no nontrivial simple closed loop}. Let

I — inf{Area(/)|/ G 7). Then there exists a map /o in 7 with Area(/o) = I■

Moreover any such map is an immersion.

PROOF. The existence statement is due essentially to Schoen-Yau and Sacks-

Uhlenbeck [SY, SU]. Results of Osserman and Gulliver show that the map / has

immersed image [O, Gu]. Finally Gabai's result shows that the map is actually an

immersion, since if it had false branch points, i.e. branch covered its image, then

there would be a simple loop in ker(/#).

NOTE. It is only assumed that the relevant homotopy class injects on simple

loops, not necessarily all loops.

We now proceed to the proof of the main result on minimal surfaces in dimension

three, which we restate below.
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THEOREM l. Let M be a Riemannian n-manifold admitting a one-parameter

group of isometries and let F be a strictly stable 2-sided minimal codimension-one

submanifold immersed in M. Then F is either horizontal or vertical.

PROOF. Suppose that F is neither vertical nor horizontal. Since F is a 2-sided

immersion, there is a local isometry J mapping a tubular neighborhood of F in

its normal bundle into M, J:F x [—e, e] —► M. Let F' = IS(F) for some s with s

close to 0. Then since F is not vertical, we can assume F' has distinct image from

F, as if It{F) — F for all small t, then F would be invariant under the isometries

It and would be vertical. But since F is not horizontal, some point P G F has a

neighborhood U such that U n IS{U) ^ 0 for any s sufficiently small.

We now consider the pull backs of F and F' to the normal bundle N of F. F

pulls back to the zero section, and if s is sufficiently small, F' is a graph over F

in N. Moreover F' intersects the zero section in a neighborhood of P. Note that

both F and F' are strictly stable minimal submanifolds in TV, as a smaller nearby

submanifold in N would correspond to one in M. Also note that F' is a graph

over F which takes on both positive and negative values. Let F'+ be the part of F'

which is a positive graph over F, and F'_ be the part which is a negative graph.

Then F'+ and F'_ intersect along F. Let p:Fx [—e,e] —► F be the projection

and let F+ = p(F+), F- — p(F'_). We cut and paste F and F' to get two new

submanifolds G\ and G2 by letting Gx = F+ U F'_ and G2 = F_ U F'+. Then
Area(Gi) + Area(G2) = 2Area(F) and each of Gi, G2, are arbritrarily close to

F in the C°° norm, so that we must have Area(Gi) = Area(G2) = Area(F) by

the assumption of strict stability. But the minimal submanifold Gi is not smooth

along the codimension-one set of points in F n F'. It is shown in [HK] that this

situation cannot occur. We outline this argument here. Let q be a point in this

intersection set. Since F', Gi, G2 are each G°° close to F, in a neighborhood of

q we can realize each of them as graphs over a small ball B about q in F. Via

results of Serrin [Se], a small neighborhood of B can be foliated by minimal balls

parallel to B. It follows by monotonicity estimates and the maximal principle

that, for a smaller ball B' about P, small graphs over dB' bound minimal graphs

over B' which are area-minimizing in their homology class (rel d). Such least area

graphs have singularities of codimension at least seven [L], so we can pick a small

disk about a nonsmooth point and replace it by a least area disk, decreasing the

total area and yielding a surface nearby to Gi with less area. This contradicts the

assumption that F is strictly stable.

3. The Simple Loop Conjecture for Seifert Fibered Spaces. In this sec-

tion we apply Theorem 1 to prove the Simple Loop Conjecture for Seifert Fibered

Spaces. We begin by recalling the geometric properties of such manifolds. They

admit natural geometric structures modelled on one of six geometries: E3, S3,

S2 x R, H2 x R, NIL, and PSL(2,iî). A description of these geometries can be

found in [S]. If M is a Seifert Fibered Space with its natural geometric structure,

then either M or a double cover M oí M admit an action of S1 where S1 acts

as isometries preserving the fibration. The obstruction to the existence of an S1

action on M itself is the possible existence of vertical Klein bottles. We now state

and prove the Simple Loop Conjecture for Seifert Fibered Spaces.
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THEOREM 2. Let f-.F —► M be a map from a closed 2-dimensional surface F

to a closed Seifert Fibered Space M and let f#:ni{F) —> 7Ti (M) be the induced map

on the fundamental group. 7/ker(/#) jé 1, then there is a nontrivial simple closed

curve in ker(/#).

PROOF. Equip M with its natural geometric structure to make it into a Rie-

mannian manifold. Assume that ker(/#) contains no simple loop. We will show

that /# is injective.

We first homotop / to be a least area map in its homotopy class, using Lemma

2. Then by Lemma 2, / is an immersion.

Case 1. There is an S1 action on M.

Then f(F) is vertical or horizontal by Theorem 1. If f(F) is vertical, then its

image is either a torus or a Klein bottle. If this torus or Klein bottle fails to inject

into 7Ti(M), then the image of tti(F) in 7Ti(M) is cyclic, and thus there is a simple

loop in ker(/#), contradicting our assumption. It follows that the image of / is a

vertical torus or Klein bottle which injects into 7Ti(M). Then by the surface case

of the simple loop conjecture, F must be a torus or Klein bottle which injects into

7Tl(M).

If F is horizontal, consider its preimage in U, the universal cover of M. U

is one of the six geometries mentioned previously, and the preimage of F in U

has components which are each transverse to the fibering of U by lines which

are the preimages of the Seifert fibers. In each of the geometries this fibering is

diffeomorphic to either the fibering of R3 by lines parallel to the Z-axis or to the

fibering of S2 x S1 by the S1 factors. Since such transverse surfaces in U can only

be planes or 2-spheres, they inject into Tri(Î7), and it follows that ni{F) must inject

into 7Ti(M).

Case 2. There is no S1 action on M.

There is still an S1 action on M, a double cover of M. If F lifts to M, then

the previous case applies to show that the lift of F injects into 7Ti(M) and thus F

injects into 7Ti(M). Thus we assume that F fails to lift to M. A double cover F of

F does lift to M.

Claim. F is strictly stable in M.

PROOF. Suppose not. The involution r of M with quotient M acts on F with

quotient F. Since F is immersed, there is an e > 0 such that r induces an involution

on T, an e-tubular neighborhood of F, with quotient T, an e-tubular neighborhood

of F. There is a local isometry from N, the e-normal bundle of F, to T and from

N, the e-normal bundle of F, to T. By conformally blowing up the metric near

dN, we can arrange that N has a metric h which is convex on its boundary and

which is locally isometric to T for points within e/2 of F. Thus h = <pg, where g

is the original induced metric on the normal bundle of F and <p is a smooth real

valued function on F x [-e,e] with <p > 1, and with ¡p\F x [—e/2, e/2] — 1. The

metric h lifts to a metric h on N, with corresponding convexity properties.

Since F is assumed to be not strictly stable, there is a surface G arbitrarily

G°-close to F in N with Area(G) < Area(F). In particular we can find such a

surface within distance e/2 of F in N. Let H be the least area surface in N which

is homotopic to F in N, with respect to the metric h. H exists by Lemma 2. H and

tH are both least area surfaces in N and it follows that they are each embedded



MINIMAL SURFACES IN MANIFOLDS WITH S1 ACTIONS 387

and that they are either disjoint or equal [FHS, §2]. They cannot be disjoint as

this would imply that F lifts to M. Thus H covers a surface H in N which is

homotopic to F and with

Area(ii") = Area(iT)/2 < Area(JF)/2 = Area(F),

where area is measured in the metric h. Now F is a least area surface in N

with respect to the metric g pulled back from M. Since the metric h on N is

obtained from g by conformally multiplying by a function pointwise larger than

one everywhere, it follows that the area of a surface contained in N with respect

to the metric h is greater than or equal to the area with respect to the metric g.

Thus the area of H with respect to g is less than the area of F with respect to g,

contradicting our assumption that F is strictly stable with respect to the metric g.

It follows that F is strictly stable in M, proving the claim.

Since M does admit an S1 action, it follows from the previous case that F is

horizontal or vertical in M, and thus that the same is true for F in M. This

concludes the proof of the Simple Loop Conjecture for Seifert Fibered Spaces.

4. Other cases of the Simple Loop Conjecture. We remark here that in

attempting to solve the Simple Loop Conjecture for the case of a general 3-manifold,

the following special cases can be demonstrated.

1. If f:F —» M lifts to a cover of M in which it is homotopic to an embedding,

then the Simple Loop Conjecture holds for f.

In this case the result follows by using the loop theorem on the manifold obtained

by cutting open along the embedded surface homotopic to the lift of /.

2. // the Simple Loop Conjecture holds for M irreducible, then it holds in general.

Let /: F —> M be a map into a reducible 3-manifold M which injects on simple

loops. Let S be an essential 2-sphere in M. Making / transverse to the 2-sphere S,

the preimage of 5 on F is a collection of embedded curves with inessential image

in 7Ti(M). Thus these curves are all inessential in F and bound disks on F. By

surgering these disks, we obtain a new map f':F—>M which misses all the essential

2-spheres and induces the same map on tti[F) as /.

3. // the Simple Loop Conjecture holds for /#:7ri(F) —► 7Ti(M) onto, then it

holds in general.

Let Mi be the cover of M corresponding to the subgroup f#{tri{F)) of 7Ti(M).

/ lifts to a map fi'.F —♦ Mi such that /i#:7Ti(.F) —> 7Ti(M1) is onto. /# has a

simple loop in its kernel if and only if /i# does. Similarly /# is injective if and

only if /i# is injective.

4. The Simple Loop Conjecture holds for general 3-manifolds if F is a torus.

The image of tti{F) in 7Ti(M) is an abelian group. If'it is cyclic, then there is

an infinite cyclic subgroup of it\ (F) = Z + Z which is in the kernel of /# : 7Ti (F) —>

7Ti(M). A generator of the kernel then gives a simple loop in kernel (/#). If the

image of /# is isomorphic to Z + Z, then f# is injective. Finally, if the image is

isomorphic to Z + Zv for some p, then 3-manifold topology dictates that the image

is isomorphic to Z + Z?, and that in this case M is S1 x RP2 connect sum some

three balls and homotopy spheres. In this case the torus would be 1-sided if its

image in it\ (M) were Z + Z2 ■
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