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UNBOUNDED COMPOSITION OPERATORS ON H2(B2)

J. A. CIMA AND W. R. WOGEN

ABSTRACT. Examples are given of holomorphic self-maps of the unit ball on

C2 which induce unbounded composition operators on the Hardy space H2.

In particular, an example is given which is one-to-one on the closed ball. Also,

a valence condition on the boundary of this ball is given which is sufficient for

unboundedness of the induced composition operator.

1. Introduction. Let Bn be the open unit ball in C™ and let H2 = H2(Bn)

be the Hardy space on Bn. If <p is a holomorphic mapping of Bn into Bn, then

the composition operator Cj, : f —► / o <h maps holomorphic functions on Bn into

holomorphic functions. If n = 1, it is well known that C¿ is a bounded operator

on H2 (see [5], e.g.). For n > 1, there are many examples (see [1, 2]) which show

that C<p need not be bounded. These examples exhibit a "collapsing" property on

the boundary dBn of Bn. For instance <j> may map an arc on dBn to a point on

dBn. The main result of this note is the construction (Theorem 2) of a mapping

$: B2 —> B2 which is holomorphic and one-to-one on B2 and such that C® is

unbounded on H2. $ is in fact a polynomial mapping.

B. MacCluer and J. Shapiro show in [4, Theorem 6.4] that if <j>: Bn —► Bn is

one-to-one and if the derivative of </>_1 is bounded on <¡>(Bn), then Cj, is bounded

on i/2 (see also [1, Theorem 2]). Our example shows that even for one-to-one

mappings, some additional hypothesis on <h must be imposed to guarantee that Cj,

is bounded. Example 4 is also related to the above theorem. In Theorem 1 we give

a valence condition on <f) which is sufficient for unboundedness of C<¡,. All of our

results rely on the following Carleson measure criterion for boundedness of C<j,.

THEOREM [3]. Suppose that 4>: B —> B is holomorphic and that p = a(<¡>*)~1.

Then C<¡, is bounded on H2 if and only if there is a C > 0 so that p(S(ç, t)) < Ct2

for all Ç G dB and t > 0. In this case we say that p is a o-Carleson measure.

W. Rudin's book [6] will be used as a standard reference. We will restrict our

attention to B2 = B. For cf>: B —> B, write <j> = (<hi,<h2). Let a denote surface

measure on dB. If C G dB, set (j)*(ç) = lim,.^, 4>(rç); so d>* : dB —> B. Further

define S(ç, t) = {z G B : \l — (z,ç)\ < t}. Here (•, •) denotes the usual complex inner

product in C2, and t > 0. Let Q(ç, t) = S(c, t) fl dB.

2. A criterion for unboundedness.  In this section we prove the following.

THEOREM 1. Suppose that 4>: B —» B is holomorphic on B and that çt>' is uni-

formly bounded on B. //sup{card(0*)_1(c;): £ G dB} = oo, then C<^ is unbounded

onH2.
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The proof of this theorem depends on the following lemma. We assume the

smoothness hypothesis of Theorem 1.

LEMMA 1. Suppose that 4>(0) = 0. Then there exist positive numbers A and 8

which satisfy the following. Ifc,^ G dB and<f>*(ç) = £, then <j)*(Q(ç,t)) c S(ç,At)
for allO <t < 6.

PROOF. <f> has a continuous extension to B, which we can also denote by <j>. In

fact 4> is Lipschitz on B. Thus there is a D > 0 so that if z, w G B and \z — w\ < t,

then \4>(z) — (¡)(w)\ < Dt. Let e = (1,0). Consider the case that ç = £ = e. Set

L^liminf1-'^'2.
z-*e 1 — \z\¿

Then by the Julia-Carathéodory theory [6, pp. 174-181], L = limr^i Di4>i(re).

Note that L > 1 by the Schwarz Lemma. For 0 < c < 1, consider the ellipsoids

By [6, Theorem 8.54], we have 4>(EC) c ELc if c < 1/L. Also note that Ec C

5(e,2c).

Now if z G Q(e,t), we have |1 — z\\ < t, so that \zi\ > 1 — i. Hence \z2[2 =

1 - |2i|2 <2t- t2. If follows that (1 - 2t,z2) G E2t. Thus (1 - 2t,z2) G S(e,4t),

so that 4>(l - 2i, z2) G S(e, 4tL).

Set 6 = 1/2L. Suppose that 0 < t < 6, and z G Q(e, t). Then \z- (1 - 2t, z2)\ <

\l-z1\ + 2t < 3i, so that \4>(z)-(f>(l-2t,z2)\ < D(St). Thus |l-(/>i(z)| < 4tL+3W,
and the lemma holds with A — 4L + 3D.

For the general case choose unitaries U and V : C2 —> C2 with Ue — ç and

Vt\ — e. Apply the first part of the proof to the map A = V o <f> o U. There

are positive numbers A and 6 so that X(Q(e, t)) C S(e,At) for 0 < t < 6. Since

U(Q(e,t)) = Q(ç,t) and V-x{S{e,At)) = S{^,At), we have (¡>(Q(c,t)) C S(£, Ai).

Finally, note that A depends on the Lipschitz constant D and on L. But L <

sup{\\4>'(z)\\ : z G B}, so that both S and A can be chosen independent of ç and £.

PROOF OF THEOREM 1. Since an automorphism of B induces a bounded

composition operator, we may assume that <j>(0) — 0. Fix a positive integer n.

Suppose that £ G dB and card(^*)_1(¿;) > n. Choose Çi,ç2,...,fn G dB so that

4>*(ík) — $i 1 < A; < n. Choose ^4 and <5 as in Lemma 1. Then choose in. with

0 < to < 6 and so that if 0 < t < to, the sets Q($i,t),... ,Q(çn,t) are pairwise

disjoint. Thus

o(ch*)-x(S(i:,At))>ol\jQ(ck,t)\ *nt2.

Since n is arbitrary, it is clear that cr(4>*)~1 is not a Carleson measure, and the

theorem is proven.

3. Examples.

EXAMPLE 1. This example is a slight variant of an example shown to us by

J. P. Rosay. Let

XP(Z!, Z2) = i(l + z\ + z\, Z2(\ - Z\ - Z\)).
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If z G B, then

|^)|2 = ¿(1 + 2Re(z2 + z2) + \z\ + z2\2 + \Zl\2(l -2Re(z2 + z2) + \z\ + z\\2))

<i(2 + 2|22 + 222|2)<l.

Further, [xp(z)\ = 1 if and only if z\ + z\ — 1, in which case xp(z) — e. Thus

(xp*)~l(e) is the unit circle C in the Rezi,Rez2 plane. Hence C$ is unbounded

on H2, by Theorem 1. It can be shown directly that (j(xp*)-1(S(e,t)) « t3/2. We

observe some additional properties of xp. Consider the complex Jacobian Jxp on B.

It is easy to check that Jxp vanishes only on C and on the complex line zi = 0.

Also if z and w are in B — C and xp(z) = xp(w), we have 2, = iiu, and z2 = w2.

Thus xp is a two-to-one map on B — C. •0 is one-to-one on {z G B: Re 2, > 0}.

EXAMPLE 2. Let p(zi,z2) = (l-,/±(l - 22 - z|), \z2(\ - z\ - z\)). Here VT"

denotes the principal branch of the square root. Then p shares may properties with

xp. An application of the Schwarz Lemma shows that |pi(z)| < |^i(^)| for z G B.

It follows that p(B — C) C B. Also p(c) = {e}, and p is two-to-one on B — C. p is

continuous on B, but p' is not bounded on B.

We will show that Cp is compact on i/2. First we show that p(B) is contained

in a Koranyi approach region Da(e) = {z G B: [1 — zi\ < (q/2)(1 - |2|2)}.

Let Ei = {z G B: |1 - z\ - z\\ < ±} and E2 = B - Ei. Then sup{|p(z)| : z G

E2} < 1, so we have p(E2) C Dao(e) for some an > 0. If z G E\, then

IpWI2 < 1 - 2Re sj\{\-z\-zl) + \\\ - z2 - z2\ +\\1 - z2 - z\\2.

Thus

1 - \p(z)\2 > 2Re^(i^z[^zi) - |1 - z\ - z2\.

But Re(l - 22 - x2,) > 0, so

Re^l-z2-z2>-L\l-z2-z2\V2.

Hence

1 - |p(^)|2 > |1 - ^? - ^|1/2(1 - |1 - ^? - ^ll1/2)

>i\l-zf-zl\x^ = i\l-Pl(z)\.

So p(B) c Da(e), where a = max(an,4).

By the computation mentioned in Example 1, we have

o(pT1(S(e,t)) = o(rr1(S(e,2t2)) « t3.

By [3, Lemma 2.1, (ii)], Cp is compact.

We now construct a biholomorphism $ of B into B which is a homeomorphism

of B onto $(£?) and such that C& is unbounded on H2. Let V be as in Example 1

and let

4>(z) = ¿(18 + 901 -22? + 2z%,9z2 -4zxz2).

We will consider the map $ — xp o <h. Our first step is to study cp.
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LEMMA 2.   Letf(z) = 18+92-222. If\z\ < r < 1 andz^ r, then\f(z)\ < f(r).

PROOF. Let z = rel6 = x + iy, 0 < r < 1. Then

|/(2)|2 = 18 + 92r2 + 22r4 + 2 • 9 • 18x - 2 • 2 ■ 18(x2 - y2) - 2 ■ 2 ■ 9r2x

= 468 + 153r2 + 4r4 - 144(1 - x)2 + 36x(l - r2)

< 468 + 153r2 + 4r4 - 144(1 - r)2 + 36r(l - r2) = f(r)2,

with equality if and only if x = r.

NOTE. g(z) = f(z)/25 is the second Taylor polynomial at z = 1 of the auto-

morphism A(z) — (z + 2/3)(l + 22/3)-1 of the unit disc A. Using Lemma 2, one

can see that g (A) C A. Also g is univalent on A, g(i) = 1, and the range of g has

second order contact at 1 with the unit circle.

LEMMA 3.   <p is one-to-one on B.

PROOF. Suppose that <p(z) = <p(w) with z,w G B. Then 92i - 2z\ + 2z\ =

9wi - 2w\ + 2xv2, so that (2, - u>i)(9 - 22, - 2wi) = 2(w2 - z2)(w2 + z2). Hence

|Z1 -Wl\ < l\u>2 - Z2\.

Also 922 — 42i22  = 9tl>2 — 4xViXV2 SO that  (9 — 42,)(22 — w2)  = 4w2(zi — Wi).

Thus I22 — xv2\ < ||2i — wil, and 2 = w.

LEMMA 4.   <p(e) = e, and 4>(B - {e}) c B.

PROOF. For 2 G dB, write 21 = reie = x + iy. Then |22| = \/l - r2. Lemma 2

is used in the following inequality.

25\4>(z)\2 < (|18 + 92i-222|+2|22|2)2 + |22|2|9-42i|2

< |/(2i)|2 + 4/(r)(l - r2) + 4(1 - r2)2 + (1 - r2)(81 - 72x + 16r2)

= 468 + 153r2 + 4r4 - 144(1 - x)2 + 36x(l - r2)

+ 4(18 + 9r-2r2)(l-r2)

+ 4(1 - r2)2 + (1 - r2)(81 - 72x + 16r2)

= 625 - 144(1 - x)2 + 36(1 + r)(l - r)(r - x) < 625

since 36(1 + r)(l - r)(r - x) < 72(1 - x)2 < 144(1 - x)2. Also note that equality

holds if and only if r = x = 1.

The motivation behind the formula for <p is that if 21 and 22 are real, then

4>i(zi,z2) = Reg(2i +¿22) and 4>2(zi,z2) = Img(2i +122)- Since g(A) C A, one

can hope that <p(B) c B. Further, the curve 4>(C) has second order tangency at e

toC.

THEOREM 2. <&(B) C B, $ is a homeomorphism of B onto $(B), and C<¡> is

unbounded on i/2.

PROOF. Since 4> and xp both map B into B, we have $(B) C B. Also Re <pi(f) >

0 for 2 G S and xp is one-to-one on B n {2: Re 21 > 0}. Hence Lemmas 3 and 4

show that $ is a homeomorphism. It remains to show that C$ is unbounded. Now

•iW = \ 1 + 252 ((18 + 92i - 2z\ + 2z\)2 + (922 - 42i22)
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and a computation shows that

l-«i(z) =
1250

144(1 - 2i)2 + (1 - z\ - z\)(\hl - 362i + 4z\ + 4zl)].

Thus,

(1) |l-$i(2)|< l([l-Zl\* + \l-z¡-z¡\)    {or zGB.

We will show that \imt>o(cr(^*)~1(S(e,t))/t2)  = oo so that cr($*)_1 is not a

Carleson measure.

Consider the parametrization of dB given by (21,22) = (s/l — pe101, y/pe102 ) ;

0 < p < 1, —7T < 6i,92 <ir. It is easy to check that do = dpd0id92. For 0 < f < 1,

let

Bt = {(x/U^~pei6\yfpeie*y.Q<0i < t, 0 < 92 < tt,p < mm{Vt,(t/62)}.

The following estimates show that Bt C ($*)~1(S(e,t)).   Suppose that 2 G Bt.

Then

(2)

Also

(3)

|l-2i|2 = l-r-|2i|2-2|2i|cOS0i < (1 - \Zl \)2 + 9J

= (i - Vi-p)2 + ö2 < p2 + ej < t +12 < it.

\\-z\- z22\ = |1 - (1 - p)e2l9i - pe2l6*\ < p\l - e2ie>\ + (1 - p)|l - e2^ \

< 2p02 + 20! <2t + 2t = it.

Thus from (1), (2), and (3), |1 - $i(z)| < ¿(2t + 4i) = t.

Finally,

et r^/i c\i /*7r ft/62 /.ir    ±

<r(Bt)=      dOi    /     (¿02 /     dp+ I   d62 I       dp   =t2 + t       —d62
JO [Jo Jo Jy/t JO J^i °2

1      Í2     1
= t2 +i2ln7r + £2ln— > —In-.

y/i      2      t

Thus lt($*)_1 is not a Carleson measure.

$ is the simplest one-to-one map we have been able to construct which induces an

unbounded composition operator. However, motivated by inequalities (2) and (3),

we can construct a simple (quadratic) mapping A of B into B which is two-to-one

on B and so that Ca is unbounded.

EXAMPLE 3. Consider A(z) = 1(5 + hz\ - z\ + \z2,z\). Just as in Lemma 2,

one can show that

|5 + 5zi - z\\ < 5 + 5r-r2    if|2X|=r<l.

Thus if 2 G dB and |2i| = r, we have

|A(2)|2 < |Ai(2)| + |A2(2)|2 < 1 (|5 + 521 - z2\ + f|22|2) + ¿(1 - r2)2

< 1[5 + 5r - r2 + §(1 - r2) + ¿(1 + r)2(l - r)2]

<è[9-f(l-r)2 + |(l-r)2]<l,
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with equality only if 21 = r = 1. Thus A(B — {e}) C B. It is elementary to check

that A(z) — A.(w) if ond only if z2 = w2, so that A is two-to-one on B.

1-Ai(2) = 1-1 (5 + 521 -22 + §2¡)

= ^[5(1-21)2 + 3(1-^-^)],

so the same argument as in the end of the proof of Theorem 2 shows that tr(A*)_1

is not a Carleson measure. We close with the following example.

EXAMPLE 4. Let <j>(z) = 1(1 + 21,22) and let xp be as in Example 1. Set $ =

xpo(p. Then just as for the map of Theorem 2, we have that $ is a homeomorphism

of B onto $(B), $(e) = e, and §(B - {e}) C B. Also the derivative of ^l is

unbounded near e. We claim that C$ is bounded, even though the MacCluer-

Shapiro Theorem [4, Theorem 6.4] does not apply. The proof is somewhat tedious,

and we only give an outline. We must show that there is a C > 0 so that if

ç G dB and t > 0, then o(^*)~1(S(ç,t)) < Ci2. Since on the complement of a

neighborhood of e, |$*| is strictly less than 1, we need only consider ç near 1. Then

if 2 G Q(c, t) and t is small, we will also have 2 near e.

If |1- ($(z),c)| <t, then

(4)

But

Ifil
si

Il + ^i)2 &   \Z2\ u       n    ,   ,  \2        „21 j, t
-jg— |4-(l + 2i)    -z2\<t.

(5) |4 - (1 + 21)2 - 22| < |1 -zt\ |3 + *i| + (1 - |2i|2)

<4|l-2i|+2|l-2i| =6|l-2i|.

Let A = 2^/2/ci - 1 - 1. Then |A| > 1 and A is near 1.

(6) |8/çi - 4 - (1 + 21)2 - 222| > |A - 2i| |A + 2 + 2i| - |22|2

>3|A-2i|-2(l-|2i|) > |A-2i|.

From (4), (5), and (6) we have

(7) ^iA-„i-^f^rF6|1.gll<,

Some computation shows that

Vl-ki|Vl-kil2 < 2 (2y/2^]ç7\ - 1 - \zi\) < 2|A - 2i|.

Hence if ç and 2 are sufficiently near e that |Çi|/8 > -^ and |1 — 211 < ^, then

from (7),

T5|A-2i|-^|A-2i|<i.

Thus 2 G Q((A/|A|,0),20í). We can take C = 400.
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