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THE STRUCTURE OF CYCLIC LIE ALGEBRAS

DAVID J. WINTER

ABSTRACT. Simple toral rank 1 Lie algebras have been classified in Wilson

[8]. This paper is concerned with the structure of a nonsimple toral rank 1

Lie algebra with respect to a specified "toral rank 1" Cartan subalgebra or,

equivalently, with the structure of a nonsimple graded Lie algebra where the

grading is the cyclic group grading determined by a specific "toral rank 1"

Cartan subalgebra. Such graded Lie algebras are called cyclic Lie algebras, to

distinguish them from ungraded toral rank 1 Lie algebras and from graded toral

rank 1 Lie algebras where the grading is not a cyclic group grading determined

by a "toral rank 1" Cartan subalgebra.

The structure theorems on cyclic Lie algebras of this paper are established

by studying L in terms of its graded subalgebras and quotient algebras. Their

importance is due to the central role which cyclic Lie algebras play in the

theory of Lie algebra rootsystems.

1. Introduction. In Kaplansky [4], a simple (finite-dimensional) Lie algebra

having a Cartan subalgebra spanned by a single element h such that all roots of

ad/i lie in the prime field is shown to be SI2 or the Witt algebra 2Di. In Wilson

[8], simple Lie algebras of toral rank 1 of characteristic p > 7 are shown to be 6I2

or in one of the classes W(l: n), Sj(2: n: 4>)^2\ Here, a Lie algebra L is toral rank 1

if L has a cyclic Cartan decomposition L = Y%Zo Lia for some root a. In Benkart

and Osborn [1], a simple rank one Lie algebra L of characteristic p > 3 is shown to

be 6(2 or Albert-Zassenhaus. Although all of these algebras are, indeed, toral rank

one, some Cartan decompositions are not cyclic (except when L is 6(2 or 2öi),

notably those ultimately used for the rank one classification.

In this paper, we study the structure of cyclic Lie algebras, that is toral rank one

Lie algebras together with a specified cyclic Cartan decomposition L = X^=o ^»a

over a field of characteristic p > 0. To distinguish these graded Lie algebras from

ungraded toral rank 1 Lie algebras and from graded toral rank 1 Lie algebras where

the grading is not a cyclic group grading determined by a "toral rank 1" Cartan

subalgebra, we introduce the following terminology. In Definition 1.1, F(Lo,k)

denotes the vector space of mappings from Ln to k.

1.1 DEFINITION. A cyclic Lie algebra is a graded Lie algebra L — X^ogg^S'

where G is an additive cyclic subgroup of F(Lo, k) and

Lg = {x G L I (ad h - g(h)I)diin Lx = 0 for all h G L0}     foi g G G.

Here, 0 denotes the zero function on Ln.    D

Note that the condition on the Lg (g G G) in Definition 1.1 implies that Ln is

a split Cartan subalgebra of L whose roots are among 0, a,..., (p — l)a for any

Received by the editors July 5, 1983 and, in revised form, April 10, 1984 and March 21, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 17B05, 17B20, 20H15, 20B25,

20F05; Secondary 05B25.

©1987 American Mathematical Society

0002-9939/87 $1.00 + $.25 per page

213



214 D. J. WINTER

generator a for G. Thus, Lo is a cyclic Cartan subalgebra of L in the sense that

¿o is a split Cartan subalgebra of L whose roots generate a cyclic group of order

1 or p. Conversely, any cyclic Cartan subalgebra H of L in this sense determines,

in the form of its Cartan decomposition, a grading for L relative to which L is a

cyclic Lie algebra with zero subalgebra Ln = H.

Cyclic Lie algebras arise in the study of a rootsystem R of an arbitrary Lie

algebra L — YlaeR^a- Specifically, the sections La = X^=o L%a (a G R — {0}) of

L and the La-modules L¡,(a) = Y11=-r Lb+ia = ^2ceRb(a) ̂ c (b G R) correspond

to sections Ra = R (1 Za (a G R — {0}) and a-orbits Rb(a) (b G R) in R. The

orbit structure of R is determined by the La-modules Lb(a) (a G R — {0},b G R).

Accordingly, the representation theory for sections La (a G R — {0}) is closely

related to the theory of rootsystems R of L. Since the choice of R determines a

specific grading for the sections La (a G R — {0}), they are studied relative to that

grading, that is, they are studied as cyclic Lie algebras in the sense of Definition

1.1

We now state some results used in this paper. Theorem 1.2 is a result on graded

Lie algebras more general then cyclic Lie algebras.

1.2 THEOREM (WINTER [10]). A graded Lie algebra L = Y,geG L9 with G

cyclic such that ad in consists of nilpotent transformations is solvable (nilpotent if

(adL)p c adL and all torsion in G is pe-torsion).

1.3 THEOREM (WINTER [9]). Let L be a cyclic Lie algebra L = Y%Zo Lia-
Then the following conditions are equivalent:

(1) L is solvable;

(2) a(\Lia,L-ia]) =0forl<i<p-l;
(3) the ideal Hoc = L°° n H is ad-nilpotent on L.    D

In Theorem 1.3, L°° is defined as f|~ i L', where L1 = L,L2 = [L,L],..., Ll+1 =

[L,Ll],_   We also define SolvL as the solvable radical of L and NilL as the

nilpotent radical of L.

1.4 THEOREM (Schenkman [5]). Let B be a subnormal subalgebra of L.

Then B°° is an ideal of L.    D

1.5 THEOREM (BLOCK [2]). Let L be a differentiably simple Lie algebra.
Then L is isomorphic to S(n) = k[G] ®fc S for some simple Lie algebra S and

some integer n > 0, where k[G] is the group algebra of an elementary abelian p-

group G of order pn. We let am" be an isomorphism from Z™ to G and denote

G = xzp.

The following theorem generalizes the corresponding result of Winter [11] from

abstract Lie algebras to graded Lie algebras L. The proof carries over to the graded

case, using Theorem 1 of Winter [10]. In the theorem, SolvL denotes the graded

solvable radical of L, that is, the (unique) maximal graded solvable ideal of L. (Take

the trivial grading to recover the theory for abstract Lie algebras.)

1.6 THEOREM. Let L = J2g^G Lg ^e a -^ie a^9e^ra graded by a group G whose

torsion is all pe-torsion.  Then L has a graded subalgebra L' such that

(1) L = L' + SolvL;
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(2) L' n Solv L is nilpotent.

If H is a Cartan subalgebra of Lq, then L' can be taken to be ad H-stable.    D

Let NilL denote the graded nilpotent radical of a graded Lie algebra L, that

is, the (unique) maximal graded nilpotent ideal of L. The above theorem has the

following corollary, wherein a graded Lie algebra L is simple if it has no proper

graded ideal; and local if Nil L is a unique maximal graded ideal of L.

1.7 COROLLARY. Let L be a Lie algebra graded by a group whose torsion is

all pe-torsion. Let L' be a minimal graded subalgebra such that L = L' + SolvL.

Then

(1) V O SolvL is nilpotent;

(2) L' is local if and only if L/ Solv L is simple.

PROOF. By Theorem 1.6, L' has a graded subalgebra L" such that V = L" +

Solv L' and L" D Solv L' is nilpotent. It follows that L = V + Solv L = L" +

Solv V + Solv L where Solv L' + Solv L is a graded solvable ideal of L = L' + Solv L.

But then SolvL' C SolvL and L - L" + SolvL. Since L" C L', minimality of

L' implies that L" = L'. But then SolvL' = L" n SolvL' is nilpotent, that is,

SolvL' = NilL'. Since L/SolvL = L'/(L' n SolvL) has no nonzero solvable

graded ideal, we have NilL' = SolvL' — L' n SolvL. In particular, L' n SolvL

must be nilpotent. This proves (1) and establishes that SolvL' = NilL'. For one

direction of (2), suppose that L' is local. We show that L/SolvL is simple, using

the isomorphism L/ Solv L = L'/L'n Solv L = V/ Nil V, by showing that V/ Nil V
is simple. In fact, simplicity of L'/NilL' is a direct consequence of the condition

that L' is local and L'/NilL' is semisimple. For the other direction, suppose that

Lj Solv L = L'/ Nil L' is simple. We claim that L' is local. Let I be a proper graded

ideal of L'. Then L ^ I + Solv L by the minimality of V such that L = L' + Solv L.

Since L/SolvL = L'/NilL' is simple, we conclude that icL'n SolvL = NilL'.
Thus, L' is local.    D

2. The structure of nonsolvable cyclic Lie algebras. Theorem 1.3 gives

the solvability criteria for cyclic Lie algebras. We now turn to the structure of

nonsolvable cyclic Lie algebras. We begin with the following version of Schur's

Lemma.

2.1 THEOREM. Let L = ^2geGLg be a cyclic Lie algebra and let I be an

ideal of L. Then either L/I is nilpotent or I is solvable (respectively, nilpotent, if

(adL)pCadL).

PROOF. The intersection IQ = iDLn satisfies either a(I0) = {0} or a(I0) ^ {0},

and we have:

(1) a(Io) = {0} if and only if ad Jo is nilpotent on L;

(2) a(I0) jt {0} if and only if ad I0(Lg) = Lg for all g G G - {0} (since g C Zpa).

Here, a is a root generating the cyclic group G.   If a(Jn) = {0} and ad Jo is

nilpotent on /, then J = YlgeG ^g ys solvable (respectively nilpotent, if (ad L)p C

adL), by Theorem 1.2. If a(I0) ¿ {0}, then

lD[I,L]D^[I0,Lg]D     £    Lg = Lt.

geG g€G-{0}
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Since I D L* and L = Lo + L», L — Lo + L But then L// = (Lo + /)// =

Lo/(Lo D /). Since Lo is nilpotent, L/I is also nilpotent.    D

Since B°° is an ideal of L for every subnormal subalgebra B of L, by Theorem 1.4,

Theorem 2.1 has the following corollary.

2.2 COROLLARY. Every nonsolvable subnormal subalgebra B of a cyclic Lie

algebra L contains L°°.

2.3 THEOREM.    Let L = Y^geG^g be a nonsolvable cyclic Lie algebra.  Then

(1) the graded ideal L°° of L is a cyclic Lie algebra (relative to the grading which

it derives from L);
(2) L°° = L°°2 and L°°/SolvL00 is a simple cyclic Lie algebra.

PROOF. Consider the ideal / = L°°2 of L. By Theorem 2.1, either L/L°°2

is nilpotent or L°°2 is solvable. Since L is nonsolvable, it follows that L/L°°2 is

nilpotent. Then we conclude that L°° C L°°2. The other inclusion clearly also

holds. Thus, L°°2 = L°°. Since L°° = H^ + T,geG-{o}Lg 8ives the grading

L°° = £geG LT of L°°> where Lo° = #°o = H n L°°, showing that L°° with this

grading is cyclic amounts to showing that Lq° is a Cartan subalgebra of L°°. Since

L°° is nonsolvable, ad Lg0 does not consist solely of nilpotent transformations, by

Theorem 1.2. It follows that a(Lo°) ^ {0}, where a is a generator for the cyclic

group G. Consequently, [Lo°,L°^] = L°° for all g / {0}, which implies that Lg0

is a Cartan subalgebra of L°°. Thus, L°° is a cyclic Lie algebra. This proves (1).

It remains only to show that L°°/SolvL00 is simple, since SolvL00 is a graded

ideal and (L°°/ Solv L°°)0 = Lg° + Solv L°°/ Solv L°° is a Cartan subalgebra of the

graded Lie algebra L°°/SolvL00 = E96g(LOO/So1vLO°)9 with (L°° / Solv L°°)g =

L°° + SolvL00/SolvL00. For this, let I be an ideal of L°° properly containing

SolvL00. We must show that J = L°°. We proved in (1) that L°° is a cyclic Lie

algebra. By Theorem 2.1, we may therefore conclude that either L°°/I is nilpotent

or / is solvable. If I is solvable, then I = SolvL00. Thus, we must conclude that

L°°/I is nilpotent. We proved, as the first part of (2), that L°° = L°°2. It follows

that L°° = I, as asserted by the nilpotency of L°°/I.    D

We next observe that (L°° + SolvL)/SolvL is differentiably simple, that is, has

no proper ideal invariant under all derivations. For this, consider any ideal I of L

contained in L°° + Solv L and properly containing Solv L. Then I is nonsolvable,

so that / D L°° by Theorem 2.1. Since I D Solv L, it follows that J = L°° + Solv L.

This shows that (L°° + SolvL)/SolvL has no proper ideals invariant under the

derivations induced by ad L, so that (L°° + Solv L)/ Solv L is differentiably simple.

We also observe that

(L°° + Solv L)/ Solv(L°° + Solv L) = (L°° + Solv L)/(Solv L°° + Solv L)

= L°7 SolvL00 = 5,

where S is a simple Lie algebra by Theorem 2.3. Since (L°° + Solv L)/ Solv L is

differentiably simple and, as just noted, its quotient by its solvable radical is S,

L°° = Solv L/ Solv L is isomorphic to S(n) + k[xzr ] ®k S for some n > 0 by

Theorem 1.5. This proves the following result.

2.4 THEOREM. Let L be a cyclic Lie algebra. Then (L°° + SolvL)/SolvL is

isomorphic to fc[izp] ®fc (L°°/SolvL00) for some n > 0.    D
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When L is restricted, a much stronger version of Theorem 2.3 holds. Recall from

§1 that a graded Lie algebra L is local if NilL is the unique maximal graded ideal

of L. For cyclic Lie algebras, we may drop the adjective "graded" when it applies

to ideals, but not when it applies to subalgebras, since the grading is a Cartan

decomposition.

2.5 THEOREM.    Let L be a restricted cyclic Lie algebra.  Then

(1) L is solvable if and only if L°° is nilpotent;

(2) every nonnilpotent ideal of L contains L°°;

(3) L°° is a local Lie algebra.

PROOF. For (1), suppose that L is solvable. Then g([LgL_g]) = 0 for all g G G,

by Theorem 1.3. It follows that adLg° consists of nilpotent linear transformations.

Since L is restricted, L°° is therefore nilpotent, by Theorem 1.2. For (2) and (3),

we may assume by (1) that L is nonsolvable. For (2), let / be an ideal of L not

containing L°°. If / is nonsolvable, the L/I is nilpotent and L°° c /, by Theorem

2.1, a contradiction. Thus, / is solvable. It follows that the p-closure / of / is

solvable. But then a(Io) = {0}, where a is a generator for the cyclic group G, since

otherwise L/I is nilpotent, as in the proof of Theorem 2.1. It follows that ad Jo is

nilpotent on L, hence that J is nilpotent, by Theorem 1.2. Thus, I is also nilpotent.

For (3), let J be a nonnilpotent ideal of L°°. Then I is an ideal of the p-closure L°°

of L°° in L. Since L is a cyclic Lie algebra with graded cyclic subalgebra L°°, L°°

is a cyclic Lie algebra with respect to the induced grading. It follows from (2) of

this theorem, already established, that I contains (L°°)°°, since L°° is restricted.

But then / contains L°°, that is, / — L°°. Thus, L°° has no proper nonnilpotent

ideals and L°° is a local Lie algebra.    G

2.6 COROLLARY. Let L = J2aeR La be a restricted Lie algebra and let La =

Yl^=o Lia for any a G R. Then (La)°° is a local cyclic Lie algebra.

PROOF. La is a restricted subalgebra of L, since (adx)p G ad Lo for all x in a

basis for La taken from generating set (J¿I0 Lia : (ad x)p = ad y, [y, Lo] C Lo+p¿a =

Lo, y G Lo, ad y G ad L0.    D
When L is not restricted, we can prove the following weaker theorem, which still

shows that the "simple feature" of any cyclic Lie algebra L can be isolated in a

local cyclic graded subalgebra of L.

2.7 THEOREM. Let L be a nonsolvable cyclic Lie algebra. Let L' be a minimal

adLo-invariant subalgebra of L°° such that L°° = V + SolvL00. Then L' is a local

cyclic graded subalgebra of L such that L'/NilL' = L°°/SolvL00.

PROOF. We may apply Corollary 1.7 to the graded Lie algebra L°°. The

defining condition for L' implies that L' is a minimal graded subalgebra of L°°

such that L°° = L' + SolvL00. Since L°°/SolvL00 is simple, L' is a local graded

Lie algebra, by Corollary 1.7. Moreover, L' is nonsolvable, since L°° is nonsolvable.

It follows from Theorem 1.2 that adL0 does not consist solely of nilpotent elements.

Therefore, L0 is a Cartan subalgebra of L' and L', as a graded Lie algebra, is a

cyclic graded Lie algebra. Since L' is a local graded Lie algebra, and since we may

drop the word "graded" for ideals of L' since L' is a cyclic Lie algebra, L' is a local

(abstract) Lie algebra. Clearly, L'/ Nil V = L°°/ Solv L°°.    D
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The above theorem motivates the following definition.

2.8 DEFINITION. Let L = J2aeR La and let a G R - {0}. Then a local section of
L at a is any minimal ad Lo-invariant subalgebra L'a of (La)00 such that (La)00 =

L'a + Solv(La)°°.    D

By Theorem 2.7, the local sections are local cyclic Lie algebras. In passing from

a section La to a local section L'a, the simple Lie algebra (La)00/ Solv(La)00 of the

section La is preserved up to isomorphism as the simple Lie algebra L'a/ Nil L'a.

At the same time, the representation theory is considerably simplified by passage

from the section La to the local section L'a since the link between the algebra and

its associated simple part is much stronger.

Finally, we briefly discuss Wilson's Theorem [8] as it pertains to cyclic Lie al-

gebras, that is, toral rank 1 Lie algebras with a specificed Cartan decomposition.

Wilson shows that a simple toral rank one Lie algebra has a maximal subalgebra

L(o) whose associated filtration L(_j¡.) D ■ • • D L(_i) D L(q) D(i) ■ ■ • defined by

L(¿+i) ={xG L(l)\[x, £(_!)] D L(»)}        (i > 0);

L(_¿_i) = [L(_i),L(_î)] + L(_î)        (i> 1)

has the following properties:

(1) L = L(_i); and

(2) the zero algebra L(0)/L(i) and its module L/L^ are one of the following:

(a) L(o)/L(1) = 0Ii(L/L(o)) with dimL/L(0) = 1; or

(b) L(o)/L(i) = 6I2(L/L(o)) with dimL/L(0) = 2.

Here, (5Ii(L/L(o)) is kl where /: L/L^ —» L/L(o) is the identity map. For

a simple cyclic Lie algebra, Wilson's proof shows that there is a maximal graded

subalgebra L(q) whose associated gradation L(_£) D ■ ■ ■ D L(_i) D L(0) D L(i) D

• • • has the same properties as before, except that a third possibility must be added

under (2):

(c) L(o)/L(i) = 2ïïi(L/L(o)) with dim L/L(0) = p - 1.

Here, 2B"i (L/L(0)) is the restricted linear Witt algebra of degree p — 1. Clearly,

this result for simple cyclic Lie algebras implies the same result for local cyclic Lie

algebras L, since L/ Nil L is a simple cyclic Lie algebra with grading inherited from

L. We now state this result in this general form.

THEOREM (WILSON [8]). Let L be a local cyclic Lie algebra. Then L/NilL

is isomorphic to one of &l2, W(l: n), fj(2: n: (f>)^ and L has a maximal graded

subalgebra L(q) whose associated filtration L(_¿.) D • • • D L(_i) D L(o) D L(t) D ■ ■ ■

has the following properties:

(1) L = L(_i); and

(2) the zero subalgebra L(0)/L(i) and its module L/L(o) are one of the following:

(a) L(o)/L(i) = öli(L/L(o)) with dimL/L{0) = 1; or

(b) L(0)/L(i) = S[2(L/L(o)) with dimL/L^ = 2; or

(c) L(o)/L(i) = 2Bi(L/L(o)) with dimL/L(0) =p- 1.    D

For L simple cyclic, fl^-i ^(») = {0}- Therefore, H^-i ^(¿) ^ NilL for L local

cyclic.



THE STRUCTURE OF CYCLIC LIE ALGEBRAS 219

REFERENCES

1. Georgia Benkart and Marshall Osborn, Rank one Lie algebras, J. Algebra (to appear).

2. Richard Block, Determination of the differentiably simple rings with a minimal ideal, Ann. of Math.

(2) 90 (1969), 433-459.
3. Nathan Jacobson, Lie algebras, Interscience, New York, 1962.

4. Irving Kaplansky, Lie algebras of characteristic p, Trans. Amer. Math. Soc. 89 (1958), 149-183.

5. Eugene Schenkman, A theory of subinvariant Lie algebras, Amer. J. Math. 73 (1951), 453-474.

6. George Seligman, Modular Lie algebras, Ergebnisse der Math. Grenzegebiete, Bd. 40, Springer-

Verlag, New York, 1967.

7. Robert L. Wilson, The roots of asimple Lie algebra are linear, Bull. Amer. Math. Soc. 82 (1976),

607-608.
8. _, Simple Lie algebras of toral rank one, Trans. Amer. Math. Soc. 236 (1978), 287-295.

9. David J. Winter, Cartgan decompositions and Engel subalgebra triangulability, J. Algebra 62 (1980),

400-417.

10. _, On groups of automorphisms of Lie algebras, J. Algebra 8 (1968), 131-142.

11. _, Reducible complements of Lie algebra radicals, Pacific J. Math, (to appear).

12. _, Symmetric Lie algebras, J. Algebra 97 (1985), 130-165.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN

48109


