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CYCLIC OPERATORS, COMMUTATORS,

AND ABSOLUTELY CONTINUOUS MEASURES

J. DOMBROWSKI

Abstract. Commutator equations are used to study the relationship between the

tridiagonal matrix structure of an unbounded cyclic selfadjoint operator and its

spectrum. Sufficient conditions are given for absolute continuity. Results are related

to the study of systems of orthogonal polyomials for which the measure of ortho-

gonality is supported on an unbounded subset of the real line.

1. Introduction. Let C be a selfadjoint operator with unit cyclic vector $, defined

on a separable Hubert space Jif. A basis {$„} can be obtained for Jff by

orthonormalizing {$,C$, C2Í>,...}. It follows that the matrix with (i, j) entry

defined by (C3>,, 4>.) has tridiagonal form:

(1.1)

6, a, 0 0

a, b2 a2 0

0     a,     b,     0
an > 0, bn real.

This matrix, in turn, can be used to define an operator on the subset Q of I2

consisting of sequences for which matrix multiplication yields a sequence in I2. If the

given operator C is bounded, then ß = I2 and the matrix operator is unitarily

equivalent to C. In fact, the set of bounded cyclic selfadjoint operators on Jf can be

identified with the set of tridiagonal matrix operators satisfying (1.1) with (an) and

{è„} bounded. In this case the sequences {an} and {/?„} provide information about

the spectral measure. Applications can be given to the study of systems of orthogo-

nal polynomials for which the measure of orthogonality is supported on a bounded

set (see [1-4]).

It is the purpose of this paper to consider matrices of the form (1.1) which

represent unbounded cyclic selfadjoint operators defined on a dense subset of a

separable Hilbert space JÍ?. The tridiagonal structure of these matrices will be used

to obtain information about the spectral measure of the corresponding selfadjoint

operator. Applications will be given to the study of systems of orthogonal poly-

nomials for which the interval of orthogonality is infinite.
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It will be shown below that (1.1) defines a selfadjoint operator C if £ l/a„ = oo.

In this case the spectral resolution C = / X dEx gives rise to a spectral measure

jii(/?) = ||F(/})(p,||2, defined for the Borel subsets of the real line. The polynomials

defined by

X- bx

(1.2)
pM

J\(A)-1,       P2(X) = "i

(* - ¿B-i)PB-i(A) - flw-2PB-2(X)

-i

'2/are orthonormal with respect to the usual inner product on L (/x) (see [6, Chapter

VII]). These polynomials will be used to show that if bn = 0, dn = an - an_x > 0,

and En°=1|i/„+1 - ¿/J < oo for all n, then C has no eigenvalues. Under additional

restrictions on the sequence {dn - dn_l) it will be shown that C is absolutely

continuous, or equivalently, that ju is absolutely continuous.

From a theoretical point of view the techniques to be used are related to the work

of C. R. Putnam on the use of commutator equations in the study of spectral

measures (see [5], for example). The use of commutator equations is obviously

complicated by the fact that the operators to be studied are unbounded and hence

only densely defined.

2. Main results. The first lemma provides a sufficient condition for selfadjointness.

Lemma 1. The matrix operator defined by (1.1) on the subset fi of I2 consisting of

those sequence for which matrix multiplication yields a sequence in I2, is selfadjoint if

£l/ß„ = oo.

Proof. To show that the matrix operator C is symmetric it is necessary to show

that (Cx, y) = (x, Cy) for any two sequences x, y in £2. Toward this end let

x = {x,}°°=i and y = {yt}f„v It follows that

¡v

(bxxx + alx2)yl + £ (a,_iX,_i + bixi + aixl + l)yi(Cx, y) —   lim
AT-» oo

and

(x,Cy) =   lim
#-»00

N

(blyl + a1y2)x1 +  ?Z fa-iPi-i + Mi + Mi+i)*i
1 = 2

If aN denotes the /Vth partial sum of (Cx, y) and ßN denotes the YVth partial sum

of (x,Cy), then \aN - ßN\ = \aNxN+lyN - a„xNyN+l\. Assume lim^ Ja^ - ßN\

= 2d, with d > 0. Then for ./V sufficiently large

d*i\aN - ßN\ « \aNxN+íyN\ + \aNxNyN+1\.

It follows that \xN+lyN\ + \xNyN+1\ > d/aN for N sufficiently large which con-

tradicts the fact that Y.^^i[\xN+lyN\ + \xNyN+i\] converges. Therefore d = 0 and C

is symmetric. To show that C is selfadjoint, assume that y = {y¡}f=i is in the

domain of C* and that C*y = « = {w,}. Then (C$„ y) = (%,C*y) implies that

"i = ai-i9i-\ + Mí + aty¡+i an<^ hence that C*y = Cy. Therefore C is selfadjoint.

D
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The objective now is to analyze the spectral measure. Throughout the remainder

of the paper the following will be assumed:

(i)       C is the cyclic selfadjoint operator defined on a dense

subset of I2 by the matrix (1.1) with £ l/a„ = oo.

(2.1) (ii)      The diagonal entries in (1.1) vanish.

(iii)     The subdiagonal sequence { an} monotonically increases to

infinity.

Also, the following notation will be used:

(i)       J = (J - T*)/2i where T<S>„ = 2an*n + 1.

(ii)      JN is the bounded operator obtained from J by letting

(2.2) a„ = aN for n> N.

(iii)     CJN — JNC = -2iKN on SlN for N — 1,2,3,_

(iv)     d„ - a„ - a„_i (a0 •= 0).

Note that for each N, ilN is a dense linear subset of I2 which contains the basis

vectors {$„}. Also KN, defined by (2.2)(iii), is bounded if {dn} is a bounded

sequence.

Lemma 2. Assume (2.1) and (2.2). If [dn] is bounded and Cx = Xx, then

(KNx,x) = 0 for N = 1,2,....

Proof. If Cx = Xx with x # 0, then x is a nonzero multiple of

(P1(X),P2(X),7>3(X),...)withE|7J„(A)|2<oo. Let Xj, = (7>,(a),. .., P/A),0,...).

If Cx = C — A7 then (CxJNXj, x) - (JNCxXj, x) = -2i(KNXj, x). Since Cxx = 0,

(JNCxXj, x) = 2i(KNXj, x). Thus since /rw is a bounded operator,

lim_,._00|(CAA:>, 7^x>| - 2|<A'wx, *)| exists. Assume lim\(CxXj,JNx)\ = 2p, p > 0.

If JNx = (r,, ?2,... ) then

\{cxxj, JNx)\ = Itjüj^Pj^iX) - \tjPj(\) + ajPj(\)tj+l |

= \-tjajPJ+i + a/, + 1P,(A)|.

If dn ■• aB — a„_1 < M then for y sufficiently large

/7 < |(CxX,, 7^>h 2My max{ |iyP, + 1(A) |, |ry+1P,(A) |}.

But this contradicts the fact that E[|iyPy+1(A)| + |/y+iP,(A)|] < oo. It follows that

Hm7_J<CxJ>/**>| = 2|<^jc, x>| = 0.   D

Theorem 1. Assume (2.1). If dn = an — an_l and T.\dn + l — dn\ < oo, then Chas

no eigenvalues.

Proof. Suppose A is an eigenvalue with corresponding eigenvector x =

(PX(X), P2(X), P3(X),...). Choose N0 sufficiently large such that for n > N0, dn

< \(a„ - |A/2|) and Y%\d, - dM\ < \(an - \X\/2). Let N be defined by P2(X) =

maxn>/v P„2(A). Then CJN - JNC = -2iKN on a dense linear subset ÜN of Jif.

Note that KN - [ku] where kH = a,2 - a,2.! for i = 1,..., yV, fe<¿ = aN(a¡ - a¡_x)



460 J. DOMBROWSKI

for /' > N, and kii+2 = ki+2j = \aN(aj+l - a¡) for i > N. All other matrix entries

of KN are zeros. It is shown in [2] that

N

E 0„2 - a2n_i)P2(X) =   «„_, 7V,(A) - $PN(\)\   +[a2N- ^)P2(X).
n = \

Thus

00

(KNx,x) = £(«? - a2_x)P,2(A) +   £ aNd,P,2(X) +   £ a^.P^P,^

>

N + l

2

N + l

«AT-l^-l(X) -   2^(A)

00 -i

-«* E T^t^+i + ̂ -i]

+  a P¿M +   E aNdtf{\)
N+l

N+Ï

aN-iPN-iW~ 2Pn(x) +   a i2)p2(X)+\aNdN+lP2+Â^)

1
-ya^AfP^(A)-a^(A) £ \dt-dt_,

z w+i

*a,-i*V-i(M - xPw(X]
1

+ 4aA'|
IAI

^(a).

If P^(A) = P^_!(A) = 0, then PN_2(X) = • • • = P,(A) = 0 which cannot happen

since P, = 1. Therefore (KNx,x) =£ 0 and by the previous lemma, A is not an

eigenvalue.    D

Sufficient conditions will now be given for absolute continuity. Another lemma is

needed. All notation remains as before.

Lemma 3. Assume (2.1) and (2.2). If the sequence [dn] is bounded, then for any

bounded interval A and positive integer N,

\(KNE(à)$v £(A)d>,)| < \]\JJ |A| \\E(A)^\\2.

Proof. Let A be the midpoint of the bounded interval A and let Cx = C - A7. If

x„ = Lf=1a,í>, where a, = (E(A)^1,^¡), then CxJNxn - JNCxxn = -2iKNx„ and

(JNx„,CxE(A)^Y) - (^„^(i)*,) = -2i(KNxn, EiA)®^. Since JN and KN

are bounded, ümn^x(Cxxn, ./^¿(A)«!),) exists and it will be shown that this limit is

(CXE(A)<S>1,JNE(A)<Î>1). If so then

(j^E(A)^l,CxE(A)<^l) - (CxE(A)^l,JNE(A)^1)

= -2i(KNE(A)<P1,E(A)<S>1)

and since ||CX/5(A)$1|| < ¿lAH^A)«!^!!, the lemma readily follows.

To evaluate the required limit, let yn = Lf=1(Cx7i(A)$,, $,)$,. Since £(A)$, is

in the domain of Cx, the sequence {yn} converges to CXE( A)<b¡, and so {JNy„} also

converges. Let «„ = Cxxn - yn_l = (a„_lan_l - Xan)<bn + a„aß„+1. Then

lim„^00(7/vco„, £(A)$!> must exist. Since £(A)<f>j = ££,,0^,

|(«B.^w£(A)*i>l = Ka»-i«n-i -*aJ<7„ + a„anqn+l\,
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where qn = (JNE(A)$x,$n). Assume \im.\(u„,JNE(A)<f>l)\ = 2p where p > 0.

Since (dn) is bounded there exists M such that an < nM. It follows that for n

sufficiently large

P <|{«li..^(A)»l)| < nM\\a„_xqn\ +\a„q„\ +|«„çB+1|].

But this contradicts the fact that £[|an_i<7„| + \a„q„\ + |a„^n + i|] < oo. Therefore

lim|<w„, JNE(A)^X)\ = 0. Hence

hm (C^/^A)^) = (CA£(A)$1,yjV£(A)01)
«—♦00

as was to be shown.   D

Theorem 1 claims that if £|i/„ + 1 - dn\ < oo then C has no eigenvalues. The next

theorem provides a sufficient condition for absolute continuity. Note that the

conditions of the theorem are satisfied if (dn) is monotone increasing, bounded

above, and dn + l - dn < dn - dn_1. In fact, all examples of this theorem are of this

type.

Theorem 2. Assume (2.1). Let dn = an — an_v If {dn} is bounded and dn + l +

d„_i < 2dn for n ^ N > 2 then C is absolutely continuous.

Proof. The equation CJN - JNC = -2iKN holds on a dense subset QN where JN

is defined in (2.2) and KN = [kt]] with ku = a2 - a2_1 for / = 1,..., N, ku =

aN{a¡ - a,_,) for i > N, and kii + 2 = \aN(al + l - a¡) for ; > N. All other matrix

entries of KN are zeros. Note also that for any interval A

00

£(A)$,=  £(£(A)01,0/)<D„   where (E(A)^>l,<t>) = f P^dfi.
/-i A

If x„ = E^T^A)^, $,->$,■ then for n > N

(KNxn,xn)=  Ziel-all) f P,dp
Ja

+      £     M*,-öf-l)
r-JV+l Ja

n-\

+ £        "»{",-",-1)1   P,+ lj   P.-X
., . , A -/a
\ ■ l

> £ («,2-^-i)

/ = i

/ P, dp
J.\

n-l
1

-     £     -aN(a,- a,..!)
i -   N+l

+      £     ajv(fl/ -û/-i)

i =   /V + l
/ P,dp
J \

> a. f Pxdn
J\

This, together with the result of Lemma 3, implies that

a2\\E(A)^\\   ^\\\JJ\A\\\E(A)^\
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Let ß be a Borel subset of the real line of Lebesgue measure zero. Then for any

e > 0 there exists a pairwise disjoint sequence of intervals ( A •} such that ß c UAy

and E|A -| < e. Since

M(/3)<£rt(A,)<-^||7j|£|Ay|

it readily follows that /x(/3) = 0.   D

Another sufficient condition for absolute continuity is provided by the following

theorem. It will be shown in the next section that many examples can be constructed

with the sequence ( dn } monotonically decreasing to a nonnegative limit.

Theorem 3. Assume (2.1). Let dn ■» aH— an_v If {dn} is bounded and d2+ï <

dn + 2dn for n > N > 2 then C is absolutely continuous.

Proof. The proof is similar to that of Theorem 2. With JN defined by (2.2) the

operator KN is obtained from the equation CJN — JNC = -2iKN which holds on a

dense subset of Jt. For any interval A let xn = E"=1(E(A)$„$,)$,.. Then for

n > N,

(KNx„,xn) =  £(a2 -a2_x)

i = i

+     £    aN(a{ - a,_x)
i = N+l

j P.dfi

+    £    flj,(fl| - ÄJ.J/ P¡+ldfij Pi-idp

£ (af - aU) f Ptdp
•'A

i-l

£     aNd¡[ Pi+idft] P^idn
.,. ,        J\ J\

i P.dli
J\

i - i

+      £     aN(a,-aí_l)

i =  N + l L'<+
n-\

£

¡■ =  N+l

Since

n-1

£   aNdifPi+idß( Pi-idn
... J\ J\

: = N+l

= aN     L     p,_l-==
i =  N+l V"i-1

/ P,+idp\   ( P^dfi
J\ J\

£   a-f
i -  N+l

d,-i ( Pi-i    +7J-\fPt+idp
Ja ",_i   A

it follows that (KNx„,x„) > a2\f Pj^dfi]2. The proof ends with the same argument

used in the proof of Theorem 2.   D

3. Examples. The purpose of this final section is to illustrate the above results.

Obviously all three theorems hold if the difference sequence [dn] is a constant

sequence. As noted above, examples for Theorem 2 can be constructed by choosing
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[dn] to be monotone increasing, bounded above with dn + l - dn < dn - dn_v

Choose, for example, dn = E"_,l/2'. For this choice of dn the hypotheses of

Theorem 2 are satisfied but those of Theorem 3 are not.

Theorem 3 requires that the sequence {dn} satisfy the condition d2+l < dndn+2

for n ^ N. This condition implies that if dn < dn+l then dn + 1 < dn + 2. It follows

that [dn}™=N is either monotone decreasing or eventually monotone increasing. If

[dn] is monotone increasing for n > M then dM+k < dM+i(dM+i/dM)k~x for

k = 1,2,..., and so [dn] either diverges or becomes eventually constant. Since

Theorem 3 also requires that {dn} be bounded it must be true that {dn}™=N is

montone decreasing.

Examples for Theorem 3 can be constructed by the following scheme. Choose

\ < d2 < d\. If *2 = d2(d2/dx) then i2 < d2 and it is possible to choose d3 with

max{42, 5} < d3 < d2. If dx,...,dn have been chosen, let i„ — d2/dn_l and

choose max{in,l/(n + 1)} < dn + l < dn. The end result is a monotone decreasing

sequence [dn] with d2+1 < dndn + 2 and T.d„= 00. One specific example is dn =

\/n.

Another, perhaps more significant, example comes from the normalized Hermite

polynomials which are orthonormal on (-00, 00) with respect to dp = w(x)dx where

w(x) = e~x . These polynomials satisfy a recursion formula of the form (1.2) with

bn = 0 and an = yfn/2. If C is defined by (1.1) and J by (2.2) then CJ - JC = -il
where 7 denotes the identity opeator (see [5, pp. 63-64] for an interesting interpreta-

tion of the operators C and J). In this case dn = (1/ ^2)(y/n - -fn — 1 ) and it can

be shown that d2+l < dndn+2 so that the conditions of Theorem 3 are satisfied.

Since 4n~ — Jn - 1 = \/({n + \jn - 1 ) the required inequality is equivalent to

(ï/m + 1  + -fñ)2 > (Jñ + -fn - 1 )(]/n + 2 + yjn + 1 ) which is easily verified.

In a related example, suppose a2 - a\_x = M for all n, so that CJ — JC = -2iK

where AT is a multiple of the identity. If dn = an - an_1 then d2+l < d„dn + 2 is

equivalent to (a„+1 + an)2 > (an + an_1)(an+2 + a„+1) which follows from the

observations  that  an_la„ + i = (an - dn)(an + dn+1) < a2 - d2+1 < a2  and  that

an-\an+2 = (a„ - dn)(an+l  + ¿« + 2) < û(„a„+1.
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