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^"-POSITIVE MAPS IN C*-ALGEBRAS

TAKASHI ITOH

ABSTRACT. Let Kn be the set of ra-positive maps of B(H) to B(H). A Kn-

positive map of a C""-algebra A to B(H) is a positive linear map <p such that

^TrfXcJi)^) > Oforany £a,c36¿ € {x e A^T(H)\Kn 9V a, (id®a)(x) >

0}. It is shown that the following three statements are equivalent. (1) Every

if"-positive map of A to B(H) is Kn+'-positive. (2) Every /("-positive map

of A to B(H) is completely positive. (3) A is an n-subhomogeneous C*-algebra.

Introduction. The concepts of mapping cones K and if-positive maps which

have introduced by St0rmer in [4] are powerful tools when one considers the exten-

sion problem of positive maps in C*-algebras.

In this paper, we investigate ^"-positive maps of a C*-algebra A to the algebra

B(H) of all bounded operators on a Hubert space H, which are induced by the

intermediary of the set of all n-positive maps Kn (which is one of the mapping

cones) in B2(H) +, and which may have a close relation with the extension problem.

The positivity of if "-positive maps is stronger than the positivity of B2(H)+-

positive maps and weaker than the positivity of C7P(iY)-positive maps, and becomes

stricter as n grows large.

For the definitions of mapping cones, B2(H)+, and CP(H) we refer the reader

to the paper [4].

According to Proposition 1 in the next section, a /^"-positive map is an n-

positive map. This is not true, however, in the reverse direction, as it is known

that a 1-positive map is not in general if ^positive (that is £?2(ü)+-positive). The

author has recently shown in [2] that the cone which corresponds to the n-positive

maps of A to B(H) is

C* = Conv ai€A, b%eT(H), i = l,...,n

in (A®1T(H))+, where T(H) is the set of all trace class operators on H. Combined

with the results of [4], the relation among the cones in (A®1T(H))+ is the following:

C?      C-.-C      C£      C       C£+i       C---C(A^T(H)) +

n n n

P(A,if1) c ••• C P(A,Kn) c P(A,Kn+X) c • • • C P(A,CP(H))

When we study the extension problem of positive maps in C*-algebras, it is

important whether the above inclusions are strict or not. Thus, we encounter a

problem which is similar to the conjecture posed by M. D. Choi [1] in 1972.  He
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asked if every n-positive map of a C*-algebra A to a C*-algebra B is a completely

positive map under the condition that every n-positive map of A to B is (n + 1)-

positive. (The answer to this was first given by J. Tomiyama [5] and independently

by R. R. Smith [3], both in 1981.)
Now, our problem is as follows: If every if "-positive map of a C*-algebra A to

B(H) is a ifn+1-positive map, is every if "-positive map of A to B(H) a completely

positive map?

The aim of this article is to show that the answer is affirmative.

Results. Throughout this paper, we assume that the Hubert space H is infinite

dimensional (not necessarily separable) if not otherwise stated and Mn is the nxn

complex matrices. We denote by if" the set of n-positive maps in B(B(H),B(H)).

if" is a mapping cone which is defined by St0rmer in [4]. Let A be a C* -algebra.

We define a cone P(A,Kn) in (A <g>7 T(H))+ as follows:

P(A,Kn) = {xE(A®1T(H))+\Kn 3V a,(id®a)(x) > 0 in A ®min B(H)} .

Let 4> € B(A, B(H)). We say that 0 is a if "-positive map if 0 is a bounded linear

functional on A <g>7 T(H) and positive on the cone P(A, if"), where

4> (J2 a* ® bi) = 12 W(oi)&<).        ai EA,btE T(H)

(bl is the transposed element in T(H) of b with respect to some fixed orthonormal

basis).

The next proposition states a basic relation between n-positive maps and if"-

positive maps.

PROPOSITION 1. Let A be a C*-algebra. If <f> is a if"-positive map of A to

B(H), then <f> is an n-positive map of A to B(H).

PROOF. It is sufficient to show that P(A, if") D C£ by using the result in [2].

Take x = (£" at g> t\-)*(£" at ® ¿>¿) in C£, where a, G A and 6, G T(H). For any

a in if", [oi(b*bj)]i<ij<n is a positive operator in B(H) ® Mn. Then, there exist

operators {cpt}i<Piî<n in B(H) such that [a(b*b3)] = Y^plcpicpj]- Therefore, we

have

(id®a) ( [ J2 a* ® b* )    ( 12a% ® h% ) | = 12a*iai ® a(bibj)
i,3

= 12 [12a' ® cvA [12 ai® cpj - °-

Hence, x is contained in P(A,Kn).

The composition map of a if"-positive map and a completely positive map is

again if"-positive. This is shown in the next proposition. Throughout the rest of

this paper, the summation symbol YL denotes a finite sum without further mention.

PROPOSITION 2. Let A and B be C* -algebras. If'<f> is a completely positive map

of A to B and if) is a if" -positive map of B to B(H), then rfi o c/> is a if" -positive

map of A to B(H). (In this proposition, H need not be infinite dimensional.)

PROOF. First we see that, for any J2ai ® bi in P(A,Kn), XXa¿) <8> h
is in P(B,Kn). In fact, for any a s if", we have that ¿~^ai ® a(6¿) is positive in
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A®mm B(H). If e is a finite-dimensional projection in B(H), J^ a¿ ® ea(6j)e is posi-

tive in A®Mdim(e). Since c/>is a completely positive map of A to B, ^<p(a,i)®ea(bi)e

is positive in B ® M<jim(e). As the dimension of e is arbitrary, we conclude that

¿2<t>(ai)®a(bi) is positive in 5®mino(ü). Therefore, J2't>(ai)®bi is in P(B,Kn).

The point having been established, we now see that the if "-positivity of ip leads

to the following inequality:

fo'd>(22ai®bi) =12Tr^°'í)(a^ =Tp(j2ct>(a>î®bl) -°-

This means that ip o c/> is if "-positive.

We remark that Proposition 2 is valid for if-positive maps with respect to the

arbitrary mapping cone if.

The next theorem is the most crucial part of this paper. We denote by if^ the

set of n-positive maps of Mm to Mm. 4>* is the adjoint map of <¡> with respect to

the inner product by the canonical trace Trm on Mm.

THEOREM 3. If 0 is an n-positive map of Mi to Mm (I < m), then <f> is a

K^-positive map.

PROOF. First, we treat the case of I = m. We notice that, for an n-positive

map 4> of Mm to Mm, t o <f>* o t is n-positive again, where í is the transpose map on

Mm. This is seen by the following calculation.

P,Q

*ot(aîaj)®eij ] [J2blb°

ot(a*ap)bpbt

= Trm l^0*(4afW
\ i,P

= Trm j¿ 4>(b¡bp Kai

= Trm ® Tr„        ¿ <p(b¡b]' ) ® e¿J J  í ¿ alpa^ ® e

\ \ ij J     VP.9

> 0     for any a¿, 6¿ G Mm and the matrix unit {e¿j} of Mn.

Therefore, for any J2cii ® í>¿ G P(Mm,K^l), we have that V^a, ® í o </>* o í(6¿) > 0

in Mm ® Mm. Thus, we conclude that

4> (12 <H 8 6.) = £ Tr(c6K)&<) = £ Tr(a<í o 0* o í(6,))

= idm (J2 todo* o t(bi) ® a,) > 0.

Next we consider the case of / < m.  Let 7t be a compression map of MTO to M;

such that 7r(a;) = exe, where e is an /-dimensional projection. Then, <p o ir is clearly
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n-positive and moreover if^-positive from the case treated. On the other hand, we

can decompose 0 as in the following diagram:

Mi —Í-* Mm

embed

Hence, <j> is a if^-positive map by virtue of Proposition 2.

COROLLARY 4. If x G M¡®Mm (I < m) satisfies the condition that (id; ®0)(z)
> 0 for any n-positive map 0 of Mm to Mm, then x is contained in the cone which is

the closure of the convex hull of ÇY™ a,-®t\)*(]>3" a¿®c\), where ai G Mi, bi G Mm.

COROLLARY 5. For any leN, if <\> is an n-positive map of M¡ to B(H), then

it is a if" -positive map.

PROOF. We have only to prove that for any x = X]a¿ ® ¿>¿ € P(M¡,Kn), the

inequality 0((1 ® e)x(l ® e)) > 0 holds for any finite-dimensional projection e such

that e* = e and dim(e) > /. Put ip(-) — e0(-)e. If dim(e) = m, then ip is an

n-positive map of M¡ to Mm. Hence, %p is if ^-positive. Since we can show easily

that (1 ® e)x(l ® e) is contained in P(M¡,Km), we obtain the inequality

0((1 ® e)z(l ®e)) = J2 Tr(ec/>(a,-)e^e) = ^(t1 ® eM1 8 e)) ^ °-

REMARK 6. It was pointed out to us by the referee that Corollary 5 is true

for nuclear C*-algebras and the improvement yields another proof of St0rmer's

theorem (Theorem 3.14 in [4]). In fact, suppose A is nuclear (there exist diagrams

of completely positive contractions

Mi

which approximately commute in the point norm topology) and 4> is an n-positive

map of A to B(H). Then 0 o r is if"-positive by Corollary 5 and tp ° t o a is also

if "-positive by Proposition 2.  Since {(fio r o a} converges to <p in the point norm

topology, we have the if "-positivity of 0.

Now, we show the main theorem.

THEOREM  7.   Let A be a C* -algebra.   Then the following three statements are

equivalent.

(1) A is an n-subhomogeneous C*-algebra.

(2) The cone P(A,Kn) is equal to the cone (A ®7 T(H))+.

(3) The cone P(A,Kn) is equal to the cone P(A,Kn+x).

PROOF. (1) => (2) Due to the fact which is proved in [5, 2], we have

C^ = (A®^T(iY)) + .

Hence, Proposition 1 entails the inclusion P(A,if") D (A®~iT(H))+. The reverse

inclusion is trivial.
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(2) => (3) This is clear.

(3) => (1) If A is not n-subhomogeneous, in view of Lemma 1.1 of [5], there exist

completely positive maps cr of A to Mn+i and p of Mn+i to A such that a o p is

the identity map in Mn+i. Moreover, there exists an n-positive map 0 of Mn+1

to B(H) which is not (n + l)-positive. 0 is a if"-positive map of Mn+i to B(H)

by Corollary 5. Hence, 0 o cr is a if "-positive map of A to B(H) by Proposition 2.

On the other hand, since 0 is not (n + l)-positive, it is not if"+1-positive by

Proposition 1. By applying Proposition 2 to 0ocr and p again, we do not have that

0 • a is if "+1-positive. Hence, we obtain a if "-positive map of A to B(H) which is

not if"+1-positive. This means that P(A,Kn) Ç P(A,if"+1), which contradicts

the assumed statement (3).

Now all implications are proved.
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