ON THE FEKETE-SZEGÖ PROBLEM FOR CLOSE-TO-CONVEX FUNCTIONS

WOLFRAM KOEPF

ABSTRACT. Let S be the familiar class of normalized univalent functions in the unit disk. Fekete and Szegö proved the well-known result

$$\max_{f \in S} |a_3 - \lambda a_2^2| = 1 + 2e^{-2\lambda/(1-\lambda)}$$

for $\lambda \in [0,1].$ We consider the corresponding problem for the family C of close-to-convex functions and get

$$\max_{f \in C} |a_3 - \lambda a_2^2| = \begin{cases} 3 - 4\lambda & \text{if } \lambda \in [0, 1/3], \\ 1/3 + 4/(9\lambda) & \text{if } \lambda \in [1/3, 2/3], \\ 1 & \text{if } \lambda \in [2/3, 1]. \end{cases}$$

As an application it is shown that $|\,|a_3|-|a_2|\,|\leq 1$ for close-to-convex functions, in contrast to the result in S

$$\max_{f \in S} ||a_3| - |a_2|| = 1.029 \dots$$

1. Introduction. Let S denote the family of univalent functions f of the unit disk, normalized by

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$

Let St denote the subset of starlike functions, i.e. functions that have a starlike range with respect to the origin. Further let C denote the family of close-to-convex functions, which have been introduced by Kaplan [4]. A function f, normalized by (1), is called close-to-convex if there exist a starlike function g and a real number α , such that

$$\operatorname{Re}(e^{i\alpha}zf'(z)/g(z)) > 0, \qquad \alpha \in]-\pi/2,\pi/2[.$$

It turns out that a function is close-to-convex if and only if it maps the unit disk univalently onto a domain whose complement is the union of half-lines, which are pairwise disjoint up to possibly equal tips (see [6-7, 1]).

A well-known function of this kind is the Koebe function k with

$$k(z) = \sum_{n=1}^{\infty} nz^n = \frac{z}{(1-z)^2} = \frac{1}{4} \left(\left(\frac{1+z}{1-z} \right)^2 - 1 \right),$$

which maps the unit disk onto the complement of the half-line $]-\infty,-1/4]$, as the last representation shows.

Many extremal problems within the class S are solved by the Koebe function. On the other hand, the Koebe function satisfies

$$|a_3 - \lambda a_2^2| = |3 - 4\lambda|,$$

Received by the editors November 19, 1985 and, in revised form, May 30, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 30C45, 30C50. Key words and phrases. Close-to-convex functions, univalent functions.

whereas Fekete and Szegö showed [3]

$$\max_{f \in S} |a_3 - \lambda a_2^2| = 1 + 2e^{-2\lambda/(1-\lambda)}$$

for $\lambda \in [0,1]$,

For $\lambda=0,1$ the Koebe function gives the maximum, but there is no $\lambda_0 \in]0,1[$ such that the functional $|a_3-\lambda_0 a_2^2|$ is maximized by k. We shall show that

$$\max_{f \in C} |a_3 - \lambda a_2^2| = 3 - 4\lambda$$

for $\lambda \in [0, 1/3]$, so that for close-to-convex functions the situation is quite different. This result implies furthermore that

$$\max_{f \in C} ||a_3| - |a_2|| = 1,$$

in contrast to the known estimate in S,

$$\max_{f \in S} ||a_3| - |a_2|| = 1.029\dots$$

(see e.g. [2, Theorem 3.11]). Moreover we show that

$$\max_{f \in C} |a_3 - \lambda a_2^2| = \left\{ \begin{array}{ll} 1/3 + 4/(9\lambda) & \text{if } \lambda \in [1/3, 2/3], \\ 1 & \text{if } \lambda \in [2/3, 1]. \end{array} \right.$$

2. Preliminary results. Here we give some lemmas which will be used in the next section to solve the main problem.

Recall that a function f is called close-to-convex of order β if there exist a starlike function g and a real number α , such that

$$|\arg(e^{i\alpha}zf'(z)/g(z))| < \beta\pi/2.$$

LEMMA 1 (see [5, Lemma 1]). Let $f \in C$. Then the function h, defined by

(2)
$$h'(z) = (f'(z^2))^{1/2}, \quad h(0) = 0,$$

is an odd close-to-convex function of order 1/2.

LEMMA 2 (see [8, p. 166, formula (10)]). Let $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ and Re p > 0. Then

$$|p_2 - p_1^2/2| \le 2 - |p_1|^2/2.$$

LEMMA 3. Let $g(z) = z + b_2 z^2 + b_3 z^3 + \cdots \in St$. Then

$$|b_3 - \lambda b_2^2| \le \max\{1, |3 - 4\lambda|\}$$

which is sharp for the Koebe function k if $|\lambda - 3/4| \ge 1/4$ and for $(k(z^2))^{1/2} = z/(1-z^2)$ if $|\lambda - 3/4| \le 1/4$.

PROOF. Because $g \in St$, the function

$$zg'(z)/g(z) = 1 + b_2z + (2b_3 - b_2^2)z^2 + \dots = 1 + p_1z(3) + p_2z^2 + \dots$$

has positive real part, so that $|p_2 - \frac{1}{2}p_1^2| \le 2 - |p_1|^2/2$ by Lemma 2. Let now $\lambda \in \mathbb{C}$. Then by (3) we have

$$|b_3 - \lambda b_2^2| = \frac{1}{2} |p_2 + (1 - 2\lambda) p_1^2| = \frac{1}{2} |p_2 - \frac{1}{2} p_1^2 + (\frac{3}{2} - 2\lambda) p_1^2|$$

$$\leq \frac{1}{2} \left(2 - \frac{1}{2} |p_1|^2 + |\frac{3}{2} - 2\lambda| |p_1|^2 \right)^2.$$

If now $|\lambda - 3/4| \leq \frac{1}{4}$, then

$$|b_3 - \lambda b_2^2| \le \frac{1}{2} \left(2 - \frac{1}{2} |p_1|^2 + \frac{1}{2} |p_1|^2 \right) = 1.$$

On the other hand, if $|\lambda - 3/4| \ge \frac{1}{4}$, then we use $|p_1| \le 2$ (see e.g. [8, Corollary 2.3]), and get

$$|b_3 - \lambda b_2^2| \le 1 + \frac{1}{2} \left(\left| \frac{3}{2} - 2\lambda \right| - \frac{1}{2} \right) |p_1|^2$$

 $\le 1 + |3 - 4\lambda| - 1 = |3 - 4\lambda|. \square$

3. Main results. The first step of the solution of the Fekete-Szegö problem for close-to-convex functions is the special case $\lambda = 1/3$.

THEOREM 1. Let
$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots \in C$$
. Then $|a_3 - \frac{1}{3}a_2^2| \le \frac{5}{3}$.

PROOF. Let $f \in C$. Then by Lemma 1 the function h, defined by (2), is an odd close-to-convex function of order 1/2.

For such functions, the author gave sharp bounds on the coefficients (see [5, Theorem 1]), in particular, the fifth coefficient of h is bounded in modulus by 1/2. On the other hand the fifth coefficient of h is given by $\frac{3}{10}(a_3 - \frac{1}{3}a_2^2)$, which implies the result. \square

The next corollary follows easily from the theorem using $|a_2| \leq 2$ (see e.g. [2, Theorem 2.2]).

COROLLARY 1. Let $\lambda \in [0, 1/3]$. Then

$$\max_{f \in C} |a_3 - \lambda a_2^2| = 3 - 4\lambda.$$

The maximum is attained by the Koebe function.

Another consequence of the theorem is the following result about successive coefficients of close-to-convex functions.

COROLLARY 2. Let
$$f \in C$$
. Then $||a_3| - |a_2|| \le 1$.

PROOF. It is well known that $|a_2| - |a_3| \le 1$ for all $f \in S$ (see e.g. [2, Theorem 3.11]). Moreover, if $|a_2| \le 1$, then also $|a_3| - |a_2| \le 1$ (see e.g. [2, proof of Theorem 3.11]). Now let $f \in C$ and $|a_2| \in [1, 2]$. Then Theorem 1 implies that

$$|a_3| - |a_2| \le |a_3 - \frac{1}{3}a_2^2| + \frac{1}{3}|a_2|^2 - |a_2|$$

 $\le \frac{5}{3} + \frac{1}{3}|a_2|^2 - |a_2| \le 1,$

as $|a_2|$ is in the above range. \square

The following notation will be used throughout the paper. For $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in C$ there is a representation of the form

$$f'(z) = \frac{g(z)}{z} \cdot \tilde{p}(z)$$

with some function $g(z)=z+b_2z^2+b_3z^3+\cdots\in St$ and some function $\tilde{p}(z)=1+\tilde{p}_1z+\tilde{p}_2z^2+\cdots$ such that $\operatorname{Re}(e^{i\alpha}\tilde{p}(z))>0,\ \alpha\in]-\pi/2,\pi/2[$. Then the function $p(z)=1+p_1z+p_2z^2+\cdots$, defined by

(5)
$$\tilde{p}_n = \cos \alpha \cdot e^{-i\alpha} \cdot p_n, \qquad n \in \mathbb{N},$$

has positive real part. Comparing coefficients in (4) we get

$$3a_3 = b_3 + \tilde{p}_1b_2 + \tilde{p}_2, \qquad 2a_2 = b_2 + \tilde{p}_1,$$

so that

(6)
$$a_3 - \lambda a_2^2 = \frac{1}{3} (b_3 - \frac{3}{4} \lambda b_2^2) + \frac{1}{3} (\tilde{p}_2 - \frac{3}{4} \lambda \tilde{p}_1^2) + \tilde{p}_1 b_2 (\frac{1}{3} - \lambda/2).$$

Now we consider the case $\lambda = 2/3$.

THEOREM 2. Let $f(z) = z = a_2 z^2 + a_3 z^3 + \cdots \in C$. Then $|a_3 - \frac{2}{3} a_2^2| \le 1$.

PROOF. From (6) it follows that

$$|a_3 - \frac{2}{3}a_2^2| \le \frac{1}{3}|b_3 - \frac{1}{2}b_2^2| + \frac{1}{3}|\tilde{p}_2 - \frac{1}{2}\tilde{p}_1^2|.$$

From (5) we get

$$\tilde{p}_2 - \frac{1}{2}\tilde{p}_1^2 = \cos\alpha \cdot e^{-i\alpha}(p_2 - \frac{1}{2}\cos\alpha \cdot e^{-i\alpha}p_1^2)$$
$$= \cos\alpha \cdot e^{-i\alpha}(p_2 - \frac{1}{2}p_1^2 + \mu p_1^2),$$

where $|2\mu|^2 = |1 - \cos \alpha \cdot e^{-i\alpha}|^2 = \sin^2 \alpha$. Now we get with the aid of Lemmas 2 and 3 that

$$\begin{aligned} \left| a_3 - \frac{2}{3} a_2^2 \right| &\leq \frac{1}{3} + \frac{1}{3} \cos \alpha \left(2 - \frac{|p_1|^2}{2} \right) + \frac{1}{3} \cos \alpha |\sin \alpha| \frac{|p_1|^2}{2} \\ &\leq 1 - \cos \alpha \frac{|p_1|^2}{6} (1 - |\sin \alpha|) \leq 1. \quad \Box \end{aligned}$$

An easy consequence using $|a_3 - a_2| \le 1$ is

COROLLARY 3. Let $\lambda \in [2/3, 1]$. Then

$$\max_{f \in C} |a_3 - \lambda a_2^2| = 1.$$

The maximum is attained by the function $(k(z^2))^{1/2}$.

We remark that Theorem 2 provides a direct proof of $|a_3|-|a_2| \le 1$ for $|a_2| \le 3/2$ (compare with the proof of Corollary 2), namely

$$|a_3| - |a_2| \le |a_3 - \frac{2}{3}a_2^2| + \frac{2}{3}|a_2|^2 - |a_2|$$

 $\le 1 + \frac{2}{3}|a_2|^2 - |a_2| \le 1$

if $|a_2| \in [0, 3/2]$.

It remains to consider the case $\lambda \in]1/3, 2/3[$.

THEOREM 3. Let $\lambda \in]1/3, 2/3[$. Then

$$\max_{f \in C} |a_3 - \lambda a_2^2| = \frac{1}{3} + \frac{4}{9\lambda}.$$

The maximum is attained by the function f, which is defined by

$$f'(z) = \frac{1}{(1-z)^2} \cdot \left(t \frac{1+z}{1-z} + (1-t) \frac{1+z^2}{1-z^2} \right), \qquad f(0) = 0,$$

where $t = 2/(3\lambda) - 1$.

PROOF. Consider equation (6). We use the estimate $|b_3 - \frac{3}{4}\lambda b_2^2| \leq 3(1 - \lambda)$, which comes from Lemma 3, further equations (5) and $|b_2| \leq 2$, getting

$$|a_3 - \lambda a_2^2| \le 1 - \lambda + \frac{\cos \alpha}{3} \left| p_2 - \frac{3}{4} \lambda \cos \alpha \cdot e^{-i\alpha} p_1^2 \right| + \cos \alpha \left(\frac{2}{3} - \lambda \right) |p_1|.$$

Writing $\frac{3}{4}\lambda\cos\alpha\cdot e^{-i\alpha}=\frac{1}{2}-\mu$, we have

$$|2\mu|^2 = |1 - \frac{3}{2}\lambda\cos\alpha \cdot e^{-i\alpha}|^2 = 1 - (3\lambda - \frac{9}{4}\lambda^2)\cos^2\alpha,$$

which implies with the aid of Lemma 2 that

$$\left| p_2 - \frac{3}{4}\lambda\cos\alpha \cdot e^{-i\alpha}p_1^2 \right| \le 2 + \frac{|p_1|^2}{2} \left(\sqrt{1 - \left(3\lambda - \frac{9}{4}\lambda^2\right)\cos^2\alpha} - 1 \right),$$

so that—using the notations $y := \cos \alpha$ and $p := |p_1|$ —it follows that

$$|a_3 - \lambda a_2^2| \le 1 - \lambda + y \left(\frac{2}{3} + \frac{p^2}{6} \left(\sqrt{1 - \left(3\lambda - \frac{9}{4}\lambda^2 \right) y^2} - 1 \right) + p \left(\frac{2}{3} - \lambda \right) \right)$$

$$=: F_{\lambda}(p, y).$$

For further simplification we shall use the notation $\gamma := 2 - 3\lambda$.

Now we shall show that F_{λ} attains its maximum value for $(p, y) \in [0, 2] \times [0, 1]$ at the point $(4/(3\lambda) - 2, 1)$. Observe that

(7)
$$F_{\lambda}\left(\frac{4}{3\lambda}-2,1\right) = \frac{1}{3} + \frac{4}{9\lambda}.$$

Suppose now that F_{λ} attains its maximum value at an interior point $(p_0, y_0) \in]0, 2[\times]0, 1[$. Then the partial derivates $\partial F_{\lambda}/\partial p$ and $\partial F_{\lambda}/\partial y$ must vanish at (p_0, y_0) . The equality $(\partial F_{\lambda}/\partial p)(p_0, y_0) = 0$ gives the relation

(8)
$$\sqrt{1 - \left(3\lambda - \frac{9}{4}\lambda^2\right)y_0^2} - 1 = -\frac{\gamma}{p_0},$$

so that

$$\left(3\lambda - \frac{9}{4}\lambda^2\right)y_0^2 = \frac{2\gamma}{p_0} - \frac{\gamma^2}{p_0^2}.$$

Now, $(\partial F_{\lambda}/\partial y)(p_0, y_0) = 0$ implies

$$\frac{2}{3} + \frac{\gamma p_0}{6} = \frac{p_0^2 (2\gamma/p_0 - \gamma^2/p_0^2)}{6(1 - \gamma/p_0)},$$

so that, by solving the quadratic equation for p_0 , we get

(9)
$$\gamma p_0 = 2\left(1 - \sqrt{1 - \gamma^2}\right).$$

Therefore, at (p_0, y_0) the value of F_{λ} becomes, using (8) and (9),

(10)
$$F_{\lambda}(p_0, y_0) = 1 - \lambda + y \left(\frac{2}{3} + \frac{1}{3} \left(1 - \sqrt{1 - \gamma^2} \right) \right) \le \frac{4 + \gamma - \sqrt{1 - \gamma^2}}{3},$$

because $y \leq 1$.

Since $\lambda \in]1/3, 2/3[$, the number γ lies between 0 and 1 so that there is some $\delta \in]0, \pi/2[$ with $\gamma = \cos \delta$ and $\sqrt{1 - \gamma^2} = \sin \delta$. The evident inequality $1 < \cos \delta + \sin \delta$

implies

$$\begin{aligned} 2 - \cos \delta &< 1 + \sin \delta \\ &\Rightarrow (2 - \cos \delta)(1 - \sin \delta) < 1 - \sin^2 \delta = \cos^2 \delta \\ &\Rightarrow (2 - \gamma) \left(1 - \sqrt{1 - \gamma^2} \right) < \gamma^2 \\ &\Rightarrow (2 - \gamma) \left(4 + \gamma - \sqrt{1 - \gamma^2} \right) < 6 - \gamma \\ &\Rightarrow \frac{4 + \gamma - \sqrt{1 - \gamma^2}}{3} < \frac{1}{3} + \frac{4}{3(2 - \gamma)} = \frac{1}{3} + \frac{4}{9\lambda}. \end{aligned}$$

Thus, using (7) and (10), we get a contradiction to our assumption that F_{λ} attains its maximum value at (p_0, y_0) , so that the maximum must be attained at a boundary point.

In both cases y = 0 and p = 0 an easy computation shows that the maximal value (7) is not attained. If y = 1 we have

$$F_{\lambda}(p,1) =: G_{\lambda}(p) = \frac{5}{3} - \lambda + \left(\frac{2}{3} - \lambda\right)p - \frac{\lambda}{4}p^2.$$

Because $G_{\lambda}(2) = 3-4\lambda$ is not maximal, the local maximum at $p = 4/(3\lambda)-2$ —given by $dG_{\lambda}(p)/dp = 0$ —is global. This leads to the maximal value (7).

Now it remains to prove that

$$F_{\lambda}(p,y) \le \frac{1}{3} + \frac{4}{9\lambda}$$

for $p=2, y \in]0,1[$. This statement is equivalent to

(11)
$$H_{\gamma}(y) := 2y \left(\sqrt{1 - \left(1 - \frac{\gamma^2}{4}\right) y^2} + \gamma \right) \le \frac{4}{2 - \gamma} - \gamma$$

for $\gamma = 2 - 3\lambda \in]0, 1[$. Because we already know that $H_{\gamma}(y) \leq 4/(2 - \gamma) - \gamma$ when $y \in \{0, 1\}$, it suffices to show (11) for points with $dH_{\gamma}(y)/dy = 0$. This leads to

(12)
$$\left(1 - \frac{\gamma^2}{4}\right) y^2 = \frac{4 - \gamma^2 + \gamma \sqrt{8 + \gamma^2}}{8}.$$

Observe that $0 \le y \le 1$ when (12) is satisfied. Squaring inequality (11) and substituting (12) gives the following inequality:

(13)
$$4\left(\frac{4-\gamma^2+\gamma\sqrt{8+\gamma^2}}{8}\right)\left(\frac{\sqrt{8+\gamma^2}-\gamma}{4}+\gamma\right)^2 \le \left(1-\frac{\gamma^2}{4}\right)\left(\frac{4}{2-\gamma}-\gamma\right)^2.$$

It remains to prove (13). A lengthy calculation gives—after multiplying with the number $(2 - \gamma)$, which is positive—the equivalent version

$$\gamma(2-\gamma)(8+\gamma^2)^{3/2} \le (4+2\gamma)(4-2\gamma+\gamma^2)^2 - (2-\gamma)(8+20\gamma^2-\gamma^4)$$
$$= 48 - 24\gamma - 24\gamma^2 + 28\gamma^3 - 2\gamma^4 + \gamma^5.$$

The right-hand side turns out to be positive:

$$48 - 24\gamma - 24\gamma^{2} + 28\gamma^{3} - 2\gamma^{4} + \gamma^{5}$$

> $28\gamma^{3} - 2\gamma^{4} + \gamma^{5} = \gamma^{3}(28 - 2\gamma + \gamma^{2}) > \gamma^{3}(26 + \gamma^{2}) > 0$,

so that equivalently, squaring again

$$\gamma^2 (2 - \gamma)^2 (8 + \gamma^2)^3 \le (48 - 24\gamma - 24\gamma^2 + 28\gamma^3 - 2\gamma^4 + \gamma^5)^2.$$

A further lengthy computation gives the equivalent reformulation

$$\gamma^{8} - 2\gamma^{7} + 17\gamma^{6} - 12\gamma^{5} - 70\gamma^{4} + 184\gamma^{3} - 118\gamma^{2} - 72\gamma + 72$$

$$= (1 - \gamma)^{2}(\gamma^{6} + 16\gamma^{4} + 20\gamma^{3} - 46\gamma^{2} + 72\gamma + 72)$$

$$= (1 - \gamma)^{2}(\gamma^{6} + 16\gamma^{4} + 20\gamma^{3} + 26\gamma^{2} + 72\gamma(1 - \gamma) + 72) \ge 0,$$

which is trivially true. This finishes the proof of the inequality

$$|a_3 - \lambda a_2^2| \le \frac{1}{3} + \frac{4}{9\lambda}.$$

From our considerations it follows that equality holds if $b_2 = 2$ and $b_3 = 3$ (so that g is a rotation of k), and if $\alpha = 0$, $p_2 = 2$, and $p_1 = 4/(3\lambda) - 2$; the function

$$\tilde{p}(z) = t\left(\frac{1+z}{1-z}\right) + (1-t)\left(\frac{1+z^2}{1-z^2}\right), \qquad t = \frac{2}{3\lambda} - 1,$$

satisfies these conditions, which makes the result sharp. \square

REFERENCES

- A. Bielecki and Z. Lewandowski, Sur un théorème concernant les fonctions univalentes linéairement accessibles de M. Biernacki, Ann. Polon. Math. 12 (1962), 61-63.
- 2. P. L. Duren, Univalent functions, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983.
- M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc. 8 (1933), 85–89.
- 4. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
- 5. W. Koepf, Coefficients of symmetric functions of bounded boundary rotation (to appear).
- Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes. I, Ann. Univ. Mariae Curie-Skłodowska 12 (1958), 131-146.
- 7. ____, Sur l'identité de certaines classes de fonctions univalentes. II, Ann. Univ. Mariae Curie-Skłodowska 14 (1960), 19-46.
- 8. Ch. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

FREIE UNIVERSITÄT BERLIN, FACHBEREICH MATHEMATIK, ARNIMALLEE 3, 1000 BERLIN 33, FEDERAL REPUBLIC OF GERMANY