MULTICOHERENCE OF SPACES OF THE FORM X / M

ALEJANDRO ILLANES M.

Abstract

Let X be a connected, locally connected, normal T_{1}-space and let M be a closed connected, locally connected subspace of X. Suppose that X / M denotes the space obtained by identifying M in a single point, and that, for a connected space Y, $\imath(Y)$ denotes the multicoherence degree of Y. In this paper, we prove that if M is unicoherent, then $\imath(X)=\imath(X / M)$. As an application of this result we prove that if $X=A \cup B$, where A, B are closed subsets of X and $A \cap B$ is connected, locally connected and unicoherent, then $\imath(X)=\imath(A)+\imath(B)$. Also, we prove that if X / M is unicoherent, then $\imath(X) \leqslant u(M)$.

Introduction. Throughout this paper X will denote a connected, locally connected, normal T_{1}-space and M will denote a closed, connected, locally connected subspace of X. We will denote by X / M the space obtained by identifying M in a single point, and by $\beta: X \rightarrow X / M$ the natural identification.

If Y is any space, let $\ell_{0}(Y)$ denote the number of components of Y less than one (or ∞ if this number is finite). The multicoherence degree, $\imath(X)$, of X is defined by $\imath(X)=\sup \left\{b_{0}(A \cap B): A, B\right.$ are closed connected subsets of X and $\left.X=A \cup B\right\}$. If $\imath(X)=0, X$ is said to be unicoherent.

We will be interested in studying relations among $\imath(X), \imath(M)$, and $\imath(X / M)$. An antecedent of this is the following theorem of R. F. Dickman, Jr. [2, Theorems 2.4 and 4.2]: If X is compact, M is unicoherent, and $X-M$ is connected, then X is unicoherent if and only if X / M is unicoherent. We will prove that if M is unicoherent, then $\imath(X)=\imath(X / M)$. Also we will prove that if X / M is unicoherent, then $\imath(X) \leqslant \imath(M)$. We will show, with an example, that the local connectivity of M is a necessary condition for these results. As a consequence of the equality $\imath(X)=$ $\imath(X / M)$, when M is unicoherent, we will obtain that if $X=A \cup B$, where A, B are closed subsets of X such that $A \cap B$ is connected, locally connected and unicoherent, then $\imath(X)=\imath(A)+\imath(B)$.

To deduce the main theorems of this paper, we will use the equality $\imath(Y)=R(Y)$, where $R(Y)$ is the "the analytic multicoherence degree of Y " which was introduced by S. Eilenberg [4], who found that $\imath(Y)=R(Y)$ when Y is a compact, connected, locally connected metric space. Later, A. H. Stone [10] proved that this equality holds for all connected, locally connected, normal T_{1}-spaces. The definition of $R(Y)$ can be found also in [11].

If f is a function, we will denote by $f \mid E$ the restriction of f to E. A map is a continuous function. A region of X is an open connected subset of X. We will denote by I the unit interval $[0,1]$, by \mathbb{R}^{2} the Euclidean plane, and by \mathbb{N} the set of positive integers. If $n \in \mathbb{N}$, we define $\bar{n}=\{1,2, \ldots, n\}$.

1. Multicoherence of spaces of the form X / M. Given $n \in \mathbb{N}$, we define $\mathscr{L}_{n}=$ $\left\{(u, v) \in \mathbb{R}^{2}:(u-(2 i-1))^{2}+v^{2}=1\right.$ for some $\left.i \in \bar{n}\right\}, \mathscr{L}_{n}{ }^{+}=\left\{(u, v) \in \mathscr{L}_{n}: v \geqslant\right.$ $0\}$, and $\mathscr{L}_{n}^{-}=\left\{(u, v) \in \mathscr{L}_{n}: v \leqslant 0\right\}$. We denote by \mathscr{C}_{n} the universal covering space of \mathscr{L}_{n} and by $\rho_{n}: \mathscr{C}_{n} \rightarrow \mathscr{L}_{n}$ the covering map. We identify \mathscr{C}_{1} with the real line \mathbb{R}, \mathscr{L}_{1} with the unitary circumference S, and $\rho=\rho_{1}$ with the map $\rho(t)=(\cos (t), \sin (t))$. If f is a map from a space Y in \mathscr{L}_{n}, we write $f \sim_{n} 1$ (or $f \sim 1$ if $n=1$) provided there exists a map $g: Y \rightarrow \mathscr{C}_{n}$ such that $f=\rho_{n} \circ g$. For $i \in \bar{n}$, we define $\mathscr{\ell}_{i}: \mathscr{L}_{n} \rightarrow S$ by

$$
\ell_{i}(u, v)=\left\{\begin{array}{l}
(u-(2 i-1), v), \quad|u-(2 i-1)| \leqslant 1 \\
(-1,0), \quad u \leqslant 2 i-2 \\
(1,0), \quad u \geqslant 2 i
\end{array}\right.
$$

From Theorem 4 in [6] we have: If Y is a connected, locally connected, unicoherent space and $f: Y \rightarrow \mathscr{L}_{n}$ is a map, then $f \sim_{n} 1$.
1.1. Lemma. If $f: X \rightarrow \mathscr{L}_{m}$ is a map such that $f \mid M \sim_{m} 1$, then:
(a) There exists a region U of X such that $f \mid U \sim_{m} 1$.
(b) There exists a map $g: X \rightarrow \mathscr{L}_{m}$ which is homotopic to f and $g \mid M$ is constant.

Proof. (a) (compare with [3, (6), §2]). Since \mathscr{C}_{m} is an ANR (normal), there exist an open subset V of X and a map $h: V \rightarrow \mathscr{C}_{m}$ such that $M \subset V$ and $\rho_{m}{ }^{\circ}(h \mid M)=$ $f \mid M$. For each $x \in M$, we choose a region U_{x} of X such that

$$
\operatorname{diameter}\left(f(U x) \cup \rho_{m}(h(U x))\right)<\frac{1}{4}
$$

and $x \in U_{x} \subset V$. Then there exists a map $g_{x}: U_{x} \rightarrow \mathscr{C}_{m}$ such that $\rho_{m} \circ g_{x}=f \mid U_{x}$ and $g_{x}(x)=h(x)$. Let $x, y \in M$ be such that $U_{x} \cap U_{y} \neq \varnothing$. Then there exists a map $k: f\left(U_{x} \cup U_{y}\right) \cup\left(\rho_{m} \circ h\right)\left(U_{x} \cup U_{y}\right) \rightarrow \mathscr{C}_{m}$ such that $\rho_{m} \circ k=$ identity and $k(f(x))=h(x)=g_{x}(x)$. By the Unique Lifting Theorem, we have that $k \circ\left(f \mid U_{x}\right)$ $=g_{x}$ and $k \circ \rho_{m} \circ\left(h \mid U_{x} \cup U_{y}\right)=h \mid U_{x} \cup U_{y}$. In particular, $k(f(y))=h(y)=$ $g_{y}(y)$, so that $k \circ\left(f \mid U_{y}\right)=g_{y}$. Thus $g_{x}\left|U_{x} \cap U_{y}=g_{y}\right| U_{x} \cap U_{y}$. Consider $U=$ $\cup\left\{U_{x}: x \in M\right\}$ and let $g: U \rightarrow \mathscr{C}_{m}$ be the map which extends each g_{x}. Then $\rho_{m} \circ g=f \mid U$. Hence $f \mid U \sim_{m} 1$.
(b) Since \mathscr{C}_{m} is contractible (see [9, Theorem 4.1, Chapter VI]), there exists a map $F: \mathscr{C}_{m} \times I \rightarrow \mathscr{C}_{m}$ and there exists a point $p \in \mathscr{C}_{m}$ such that $F(z, 0)=p$ and $F(z, 1)=z$ for each $z \in \mathscr{C}_{m}$. Let U, V be regions of X and let $h: U \rightarrow \mathscr{C}_{m}$ be a map such that $\rho_{m} \circ h=f \mid U$ and $M \subset V \subset \mathrm{Cl}_{X}(V) \subset U$. Suppose that $\sigma: X \rightarrow I$ is a map such that $\sigma(M)=0$ and $\sigma(X-V)=1$. Define $G: X \times I \rightarrow \mathscr{L}_{m}$ by

$$
G(x, t)= \begin{cases}f(x) & \text { if } x \notin \mathrm{Cl}_{X}(V) \\ \rho_{m}(F(h(x), t+(1-t) \sigma(x))) & \text { if } x \in U\end{cases}
$$

and $g(x)=G(x, 0)$.

Suppose that $X=A \cup B$, where A, B are closed connected subsets of X, and suppose that $\ell_{0}(A \cap B) \geqslant m(m \in \mathbb{N})$. Let D_{1}, \ldots, D_{m+1} be closed pairwise disjoint, nonempty subsets of X such that $A \cap B=D_{1} \cup \cdots \cup D_{m+1}$. Tietze's extension theorem implies that there exists a map $f: X \rightarrow \mathscr{L}_{m}$ such that $f(A) \subset \mathscr{L}_{m}^{+}$, $f(B) \subset \mathscr{L}_{m}^{-}$, and $f\left(D_{i+1}\right)=\{(2 i, 0)\}$ for each $i \in\{0,1, \ldots, m\}$. For $i \in \bar{m}$, we define $f_{i}=\ell_{i} \circ f$.
1.2. Lemma. f_{1}, \ldots, f_{m} are linearly independent (that means that $f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}} \sim 1$, with a_{1}, \ldots, a_{m} integers, is possible only when $a_{1}=\cdots=a_{m}=0$).

Proof. We choose a point $x_{0} \in D_{m+1}$. Let a_{1}, \ldots, a_{m} be integers such that $f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}} \sim 1$ and let $\varphi: X \rightarrow \mathbb{R}$ be a map such that $f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}}=\rho \circ \varphi$ and $\varphi\left(x_{0}\right)=0$. For $i \in \bar{m}, f_{i}(A) \subset S^{+}$and $f_{i}(B) \subset S^{-}$so, we can define $f_{i}^{+}=$ $(\rho \mid[0, \pi])^{-1} \circ\left(f_{i} \mid A\right)$ and $f_{i}^{-}=(\rho \mid[-\pi, 0])^{-1} \circ\left(f_{i} \mid B\right)$. Then

$$
\rho \circ\left(a_{1} f_{1}^{+}+\cdots+a_{m} f_{m}^{+}\right)=\left(\rho \circ f_{1}^{+}\right)^{a_{1}} \cdots\left(\rho \circ f_{m}^{+}\right)^{a_{m}}=\rho \circ(\varphi \mid A)
$$

and

$$
\left(a_{1} f_{1}^{+}+\cdots+a_{m} f_{m}^{+}\right)\left(x_{0}\right)=0=\varphi \mid A\left(x_{0}\right)
$$

Since A is connected, we have that $a_{1} f_{1}^{+}+\cdots+a_{m} f_{m}^{+}=\varphi \mid A$. Similarly, $a_{1} f_{1}^{-}$ $+\cdots+a_{m} f_{m}^{-}=\varphi \mid B$. Then, for all $i \in \bar{m}$ and $x_{i} \in D_{i}$,

$$
\begin{aligned}
0 & =\left(a_{1}\left(f_{1}^{+}-f_{1}^{-}\right)+\cdots+a_{m}\left(f_{m}^{+}-f_{m}^{-}\right)\right)\left(x_{i}\right) \\
& =a_{1} 0+\cdots+a_{i-1} 0+a_{i} 2 \pi+\cdots+a_{m} 2 \pi
\end{aligned}
$$

Hence $a_{1}=\cdots=a_{m}=0$.
1.3. Theorem. If M is unicoherent, then $\imath(X)=\imath(X / M)$.

Proof. It is easy to prove that $\imath(X / M) \leqslant \imath(X)\left(\beta^{-1}(D)\right.$ is connected for any closed connected subset D of $X / M)$. Suppose that $m \in \mathbb{N}$ is such that $\imath(X / M)$ $<m \leqslant \imath(X)$. Let $X=A \cup B$, where A and B are connected closed sets with $\ell_{0}(A \cap B) \geqslant m$, and let $f: X \rightarrow \mathscr{L}_{m}$ and $f_{1}, \ldots, f_{m}: X \rightarrow S$ be as in Lemma 1.2.

Since M is unicoherent, $f \mid M \sim_{m} 1$. By Lemma 1.1, there exists a map g : $X \rightarrow \mathscr{L}_{m}$ such that $g \mid M$ is constant and g is homotopic to f. Let $k: X / M \rightarrow \mathscr{L}_{m}$ be a map such that $g=k \circ \beta$. Define $X^{+}=k^{-1}\left(\mathscr{L}_{m}^{+}\right), X^{-}=k^{-1}\left(\mathscr{L}_{m}^{-}\right)$, and $k_{1}=\ell_{1} \circ k, \ldots, k_{m}=\ell_{m} \circ k$. Then $X / M=X^{+} \cup X^{-} ; X^{+}, X^{-}$are closed subsets of X / M, and $k_{i}\left|X^{+} \sim 1, k_{i}\right| X^{-} \sim 1$ for each $i \in \bar{m}$. Since $\imath(X / M)<m$, by [10, Theorem 5], there exists integers a_{1}, \ldots, a_{m} not all zero such that $k_{1}^{a_{1}} \cdots \cdot k_{m}^{a_{m}} \sim 1$. But $f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}}$ is homotopic to $\left(k_{1}^{a_{1}} \cdots \cdots \cdot k_{m}^{a_{m}}\right) \circ \beta$, so (see [8, Lemma 5]) $f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}} \sim 1$. This contradiction to Lemma 1.2 completes the proof.

Remarks. Notice that in Theorem 1.3 we only need M to be a closed connected subset of X such that for any $m \in \mathbb{N}$ and any map $f: X \rightarrow \mathscr{L}_{m}, f \mid M \sim_{m}$ 1. In [7], it was proved that if F is a subset of X with n elements $(n \in \mathbb{N})$, then $\imath(X / F)=$ $\imath(X)+n-1$. From here we can state the following
1.4. Corollary. Let N be a closed subset of X with n components such that for any $m \in \mathbb{N}$ and any map $f: X \rightarrow \mathscr{L}_{m}, f \mid N \sim_{m} 1$. (This is true if each component of N is locally connected and unicoherent.) Then $\imath(X / N)=\imath(X)+n-1$.
1.5. Theorem. If X / M is unicoherent, then $\imath(X) \leqslant \imath(M)$.

Proof. Suppose that $\imath(X) \geqslant m>\imath(M)(m \in \mathbb{N})$. Let $A, B, f: X \rightarrow \mathscr{L}_{m}$, and $f_{1}, \ldots, f_{m}: X \rightarrow S$ be as in Lemma 1.2. Since $f_{i} \mid A \cap M \sim 1$ and $f_{i} \mid B \cap M \sim 1$ for any $i \in \bar{m}$, we have, by Theorem 5 of [10], that there exist integers a_{1}, \ldots, a_{m} not all zero such that $\left(f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}}\right) \mid M \sim 1$. Then there exists a map $g: X \rightarrow S$ homotopic to $f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}}$ such that $g \mid M$ is constant. Let $k: X / M \rightarrow S$ be a map such that $g=k \circ \beta$. Since X / M is unicoherent, we have that $k \sim 1$. This implies that $g \sim 1$ and, consequently, $f_{1}^{a_{1}} \cdots \cdot f_{m}^{a_{m}} \sim 1$. This contradiction ends the proof.

Remark. Theorems 1.3 and 1.5 suggest the possibility that $\imath(X) \leqslant \imath(X / M)+$ $\imath(M)$ always holds. This is not true as is shown by the following
1.6. Example. Let X be a torus of genus two with an open disk removed. Let M be the boundary of X. Then M is homeomorphic to S and X / M is homeomorphic to the torus of genus two. It is easy to prove that there exists a subspace of X homeomorphic to \mathscr{L}, which is a deformation retract of X, so that $\imath(X)=4[4, \S 2$, Theorem 4]. On the other hand, $\imath(X / M)=2($ see [5]) and $\imath(M)=1$.
1.7. Corollary. Suppose that Z is a locally connected T_{1}-compactification of a connected, locally compact space Y. Suppose also that $Z-Y$ is connected and locally connected. We denote by Y_{∞} the one-point compactification of Y. Then:
(a) If $Z-Y$ is unicoherent, $\imath(Z)=\imath\left(Y_{\infty}\right)$.
(b) If Y_{∞} is unicoherent, $\imath(Z) \leqslant \imath(Z-Y)$.

Remarks. In [7], some ways of calculating $\imath\left(Y_{\infty}\right)$ for a connected, locally connected, locally compact T_{1}-space are given. The local connectivity of M is a necessary condition in Theorems 1.3 and 1.5, and in Corollary 1.7 as is shown by the following example.
1.8. Example. Let $X=\left\{(u, v) \in \mathbb{R}^{2}: 1 \leqslant u^{2}+v^{2} \leqslant 4\right\}$ and let

$$
\begin{aligned}
M=\{ & \left\{((1+2 \exp (t)) /(1+\exp (t)))(\cos (t), \sin (t)) \in \mathbb{R}^{2}: t \in \mathbb{R}\right\} \\
& \cup\left\{(u, v) \in \mathbb{R}^{2}: u^{2}+v^{2}=1 \text { or } u^{2}+v^{2}=4\right\}
\end{aligned}
$$

Then M is a closed connected subset of X. It is easy to prove that M is unicoherent, $X-M$ is homeomorphic to \mathbb{R}^{2}, and X is a compactification of \mathbb{R}^{3}. Then X / M is homeomorphic to a 2-sphere. Hence $\imath(X / M)=0=\imath(M)$, while $\imath(X)=1$.

We end this section showing a case in which X / N is unicoherent.
1.9. Theorem. Suppose that N is a closed connected subset of X and that there exists a map $g: X \rightarrow X$ such that $g(X) \subset N$ and g is homotopic to the identity of X. Then X / N is unicoherent.

Proof. Since X / N is normal, by Lemma 1.2, it is enough to prove that if f : $X / N \rightarrow S$ is a map, then $f \sim 1$. From the hypothesis, we have that $f \circ h \sim 1$ where $h: X \rightarrow X / N$ is the identification map. Let $k: X \rightarrow \mathbb{R}$ be a map such that $\rho \circ k=f \circ h$. Then $k \mid N$ is constant, so there exists a map $l: X / N \rightarrow \mathbb{R}$ such that $l \circ h=k$. Then $\rho \circ l \circ h=f \circ h$, so that $\rho \circ l=f$. Therefore, X / N is unicoherent.
1.10. Corollary. If N is a deformation retract of X, then X / N is unicoherent.
2. Multicoherence of sums. Throughout this section, A and B will denote closed, nonempty subsets of X such that $A \cap B$ is connected and $X=A \cup B$. As a special case of Theorem 7 in [10] we have that if A, B are locally connected, then $\imath(X) \leqslant \imath(A)+\imath(B)$. Theorem 2.1 gives sufficient conditions in order that the equality $\imath(X)=\imath(A)+\imath(B)$ holds. This is a generalization of Corollary 7 in [1] which says that if X is compact, $A \cap B$ and X are unicoherent, and $A \cap B$ is locally connected, then A and B are unicoherent. We will use the following result which was proved in [7]: If p is any point of X and \mathscr{D} is the family of components of $X-\{p\}$, then $\imath(X)=\Sigma_{D \in \mathscr{D}} \imath(S \cup\{p\})$.
2.1. Theorem. If $A \cap B$ is locally connected and unicoherent, then $\imath(X)=\imath(A)+$乞 (B).

Proof. Let $M=A \cap B$. By Theorem 1.3, $\imath(X)=\imath(X / M), \imath(A)=\imath(A / M)=$ $\imath(\beta(A))$, and $\imath(B)=\imath(B / M)=\imath(\beta(B))(\beta: X \rightarrow X / M$ is the identification map $)$. We put $\{p\}=\beta(M), \mathscr{D}=\{D: D$ is component of $X / M-\{p\}\}, \mathscr{D}_{A}=\{D \in \mathscr{D}$: $D \subset \beta(A)\}=\{D: D$ is component of $\beta(A)-\{p\}\}$, and $\mathscr{D}_{B}=\{D \in \mathscr{D}: D \subset$ $\beta(B)\}=\{D: D$ is component of $\beta(B)-\{p\}\}$. Then

$$
\begin{aligned}
\imath(X / M) & =\sum_{D \in \mathscr{D}} \imath(D \cup\{p\})=\sum_{D \in \mathscr{D}_{A}} \imath(D \cup\{p\})+\sum_{D \in \mathscr{D}_{B}} \imath(D \cup\{p\}) \\
& =\imath(\beta(A))+\imath(\beta(B)) .
\end{aligned}
$$

Hence, $\imath(X)=\imath(A)+\imath(B)$.

Bibliography

1. S. T. Czuba, Some properties of unicoherence, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 27 (1979), 711-716.
2. R. F. Dickman, Jr., Unicoherence and related properties, Duke Math. J. 34 (1967), 343-352.
3. S. Eilenberg, Transformations continues en circonference et la topologie du plan, Fund. Math. 26 (1936), 61-112.
4. \qquad , Sur les espaces multicohérents. I, Fund. Math. 27 (1936), 153-190.
5. __ Sur la multicohérence ces surfaces closes, C. R. Acad. Sci. Warsaw 30 (1937), 109-111.
6. T. Ganea, Multicohärenz topologischer gruppen, Math. Nachr. 7 (1952), 323-334.
7. A. Illanes M., Multicoherence of spaces obtained by identifying a finite number of points; multicoherence of one-point compactifications (preprint).
8. S. Mardešić, Equivalence of singular and Cech homology for ANR's. Application to unicoherence, Fund. Math. 46 (1958), 29-45.
9. W. S. Massey, Algebraic topology: An introduction, Graduate Texts in Math., no. 56, Springer-Verlag, New York, Heildelberg and Berlin, 1967.
10. A. H. Stone, Incidence relations in multicoherent spaces. II, Canad. J. Math. 2 (1950), 461-480.
11. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942.

Instituto de Matemáticas, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, D.F. C.P. 04510, Mexico

