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MULTICOHERENCE OF SPACES OF THE FORM X/M

ALEJANDRO ILLANES M.

Abstract. Let X be a connected, locally connected, normal 7^ -space and let M be

a closed connected, locally connected subspace of X. Suppose that X/M denotes the

space obtained by identifying M in a single point, and that, for a connected space Y,

t(Y) denotes the multicoherence degree of Y. In this paper, we prove that if M is

unicoherent, then «( X) = t( X/M). As an application of this result we prove that if

X = A U B, where A, B are closed subsets of X and A n B is connected, locally

connected and unicoherent, then t(X) = t(A) + t(B). Also, we prove that if X/M

is unicoherent, then t(X) < t(M).

Introduction. Throughout this paper X will denote a connected, locally connected,

normal 5"rspace and M will denote a closed, connected, locally connected subspace

of X. We will denote by X/M the space obtained by identifying M in a single point,

and by/3: X -* X/M the natural identification.

If y is any space, let ¿0(Y) denote the number of components of Y less than one

(or oo if this number is finite). The multicoherence degree, t(X), of X is defined by

i(X) = sup{íí0(^l Pi B): A, B are closed connected subsets of X and X = A U B).

If i( X) = 0, A' is said to be unicoherent.

We will be interested in studying relations among t(X), i(M), and i(X/M). An

antecedent of this is the following theorem of R. F. Dickman, Jr. [2, Theorems 2.4

and 4.2]: If X is compact, M is unicoherent, and X — M is connected, then X is

unicoherent if and only if X/M is unicoherent. We will prove that if M is

unicoherent, then i(X) = t(X/M). Also we will prove that if X/M is unicoherent,

then t(X) < i(M). We will show, with an example, that the local connectivity of M

is a necessary condition for these results. As a consequence of the equality t(X) =

i( X/M), when M is unicoherent, we will obtain that li X = A U B, where A, B are

closed subsets of X such that A n B is connected, locally connected and unicoher-

ent, then t(A) = t(A) + t(B).

To deduce the main theorems of this paper, we will use the equality t(Y) = R(Y),

where R(Y) is the "the analytic multicoherence degree of Y" which was introduced

by S. Eilenberg [4], who found that 4(y) = R(Y) when y is a compact, connected,

locally connected metric space. Later, A. H. Stone [10] proved that this equality

holds for all connected, locally connected, normal ^-spaces. The definition of R(Y)

can be found also in [11].
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If / is a function, we will denote by /1E the restriction of / to E. A map is a

continuous function. A region of X is an open connected subset of X. We will

denote by / the unit interval [0,1], by U2 the Euclidean plane, and by f^ the set of

positive integers. If « g M, we define « = (1,2,...,«}.

1. Multicoherence of spaces of the form X/M. Given n G f^J, we define <£?„ =

{(w, v) g U2: (u - (2/ - l))2 + v2 = I for some ; g «}, if/= {(u,»)ei?; u >

0}, and .£?„""= {(m, u) e jS?n: u < 0}. We denote by #n the universal covering space

of <S?„ and by p„: if,, -» =^„ the covering map. We identify "¡fj with the real line U,

¿£x with the unitary circumference S, and p = p1 with the map p(r) = (cos(i), sin(i)).

If / is a map from a space Y in £Cn, we write / ~ „ 1 (or / - 1 if n = 1) provided

there exists a map g: Y -* #„ such that f = p„° g. For ; g «, we define ¡f,: i*?,, -* S

by [(«-(2i-l),i>),       |«-(2i-1)|'<1,

tf,(u,v) = / (-1,0),       u<2/-2,

1,(1,0),        w>2/.

From Theorem 4 in [6] we have: If F is a connected, locally connected, unicoherent

space and /: Y -» JS?„ is a map, then / — „ 1.

1.1. Lemma. ///: A" -» ifm is a map such that f | M ~ m 1, then:

(a) 77ie/r ex/sis a region U of X such that f\U~m 1.

(b) There exists a map g: X —> ̂fm  which is homotopic to f and g \ M is constant.

Proof, (a) (compare with [3, (6), §2]). Since c€m is an ANR (normal), there exist

an open subset V oi X and a map h: V -» <êm such that M c V and pm °(/i | M) =

f | M. For each x G M, we choose a region [/, of X such that

diameter(/(i/jc) U pm(h(Ux))) < \

and x g t/v c K. Then there exists a map gx: Ux -* c€m such that p„, » gx = /1 Ux

and gx(x) = h(x). Let x, j G A/ be such that UXC\ Uy =£ 0. Then there exists a

map A:: f(Ux U t/v) U (pm ° h)(Ux U L/y) -* <¡fm such that pm°k = identity and

k(f(x)) = /t(.x) = gx(x). By the Unique Lifting Theorem, we have that k °(f \UX)

= gx and k° pm°(h\UxU Uv) = h\UxU Ur. In particular, £(/(>>)) = /.(>>) =

gv(j), so that ko(f\Uy) = gy. Thus gjc/x.n Uy-g,\Uxn Uy. Consider Í7 -

U{c7x: x g A/} and let g: U -* #m be the map which extends each gv. Then

p„,°g =/|í/.Hence/|í/~„,l.

(b) Since <êm is contractible (see [9, Theorem 4.1, Chapter VI]), there exists a map

F: ^„, X / -* <$m and there exists a point p ^ (êm such that F(z,0) = /> and

F(z, 1) = z for each z e <$m. Let t/, K be regions of X and let h: U -> "íí„, be a

map such that pm ° /i = / | Í/ and M c F c Cl ^( V) c £/. Suppose that a: X -» I is

a map such that a(M) = 0 and o( A - F) = 1. Define G: X X / -» ifm by

U''j     (P/n(F(/,(x),i+(l-/)«W))    UxeU;

and g(x) = G(x,0).



192 ALEJANDRO ILLANES M.

Suppose that X = A U B, where A, B are closed connected subsets of X, and

suppose that âQ(A D B) > m (m g 1^1). Let Dx,...,Dm + l be closed pairwise dis-

joint, nonempty subsets of X such that A C\ B = Dx U • • ■ UD„I+1. Tietze's exten-

sion theorem implies that there exists a map /: X -* i?m   such that /( A ) c i?^,

f(B)czSen-, and /(D, + 1) = {(2/,0)}  for each ie{0,l.«}, For / g iñ, we

define / = /, ° /.

1.2. Lemma. fx,...,fm are linearly independent (that means that f"1./*« ~ 1,

with al,...,am integers, is possible only when ax =  • ■ •  = am = 0).

Proof. We choose a point x0 g Z)m+1. Let av...,am be integers such that

/"'./£- ~ 1 and let (p: A' -» R be a map such that /f».f%» = p ° <p and

<p(x0) = 0.   For   i g m,   /(A) c S+  and  /,(/?) C S~  so,  we  can  define /+ =

(PI PWITW/■ | A) and/," = (pU-ir.OirW/. | 5). Then

p'h/,+ + -+«j:) = (p»/iT •••(po/-)a» = Po((pM)

and

(«i/i" + •■■ +a„X)(xo) = 0 = <p|A(xo).

Since A is connected, we have that axfx  + ■■■ +amf+ = cp\A. Similarly, a1f{

+ ■ ■ ■ + amf~ = <p | B. Then, for all /' G in and x¡ G D¡,

o = («,(# -/r) + •■ • +!!„(/; -/„-))(*,)
= ú^O + • • • -r-a^jO + a/l-n + ■ ■ ■ +am2ir.

Henee a, =  - ■ •  = a„, = 0.

1.3. Theorem. If M is unicoherent, then 4(A) = i(X/M).

Proof. It is easy to prove that 4(A/M) < 4(A) (ßy(D) is connected for any

closed connected subset D of A/M). Suppose that m e W is such that i (A/M)

< m < 4(A). Let X = A U B, where A and 5 are connected closed sets with

âQ(A O B)> m, and let /: X -» -S?m and fx,...,fm: X -» 5 be as in Lemma 1.2.

Since M is unicoherent, /|M~ml. By Lemma 1.1, there exists a map g:

A -* „S?m such that g | M is constant and g is homotopic to /. Let k: A/M -* ¿£m

be a map such that g = k ° ß. Define X+=k'\^), X~ °* k~\&-), and

kx = ¿l°k,...,km = £m ° k. Then A/M = A+U A'; A+, A" are closed subsets of

A/M, and  k,\X+~ 1,  k¡\ X~~ 1  for each i G iñ. Since 4(A/M) < m, by [10,

Theorem 5], there exists integers a,,..., am not all zero such that k"x.k%? ~ 1.

But  /f1./«-   is homotopic to (Ar!"1.ka„?)° ß,  so (see [8,  Lemma 5])

/"'./„""- ~ 1. This contradiction to Lemma 1.2 completes the proof.

Remarks. Notice that in Theorem 1.3 we only need M to be a closed connected

subset of A such that for any meM and any map /: A -» ifm, / | M ~ m 1. In [7],

it was proved that if F is a subset of A with n elements (n g H), then t(X/F) =

4(A) + w-l. From here we can state the following

1.4. Corollary. Let N be a closed subset of X with n components such that for any

m G N and any map f:X—y ifm, f\N — m 1. (This is true if each component of N is

locally connected and unicoherent.) Then t(X/N) = 4(A) + n - 1.
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1.5. Theorem. If X/M is unicoherent, then 4(A) < i(M).

Proof. Suppose that 4(A) > m > i(M) (m g N). Let A, B, f: X -* &m, and

/,,..., /„,: A -» S be as in Lemma 1.2. Since f\ A n M ~ 1 and f. | J? n M ~ 1 for

any / g m, we have, by Theorem 5 of [10], that there exist integers av..., am not all

zero such that (/"'.f^m) | M ~ 1. Then there exists a map g: X —> S homo-

topic to /1'1./„"'" such that g | M is constant. Let k: X/M -* S be a map such

that g = k ° ß. Since A/M is unicoherent, we have that k ~ 1. This implies that

g ~ 1 and, consequently, /"'.f°m - 1. This contradiction ends the proof.

Remark. Theorems 1.3 and 1.5 suggest the possibility that 4(A) < i(X/M) +

i(M) always holds. This is not true as is shown by the following

1.6. Example. Let A be a torus of genus two with an open disk removed. Let M

be the boundary of A. Then M is homeomorphic to 5 and A/M is homeomorphic

to the torus of genus two. It is easy to prove that there exists a subspace of A

homeomorphic to S£, which is a deformation retract of A, so that 4(A) = 4 [4, §2,

Theorem 4]. On the other hand, 4( A/M) = 2 (see [5]) and 4(M) = 1.

1.7. Corollary. Suppose that Z is a locally connected Tx-compactification of a

connected, locally compact space Y. Suppose also that Z — Y is connected and locally

connected. We denote by Yx the one-point compactification of Y. Then:

(a) IfZ — Y is unicoherent, t(Z) = t(Yx).

(b) // Yx is unicoherent, *(Z) < *(Z - Y).

Remarks. In [7], some ways of calculating i(Yx) for a connected, locally con-

nected, locally compact 7"rspace are given. The local connectivity of M is a

necessary condition in Theorems 1.3 and 1.5, and in Corollary 1.7 as is shown by the

following example.

1.8. Example. Let A= {(u, v) g U2: 1 < u2 + v2 < 4} and let

M = {((1 + 2exp(r))/(l + exp(í)))(cos(0, sin(/)) g U2: t e u)

U {(u,v) g U2: u2 + v2 = 1 or u2 + v2 = 4}.

Then M is a closed connected subset of A. It is easy to prove that M is unicoherent,

A — M is homeomorphic to U2, and A is a compactification of R3. Then A/M is

homeomorphic to a 2-sphere. Hence 4(A/M) = 0 = 4(M). while 4(A) = 1.

We end this section showing a case in which A/7Y is unicoherent.

1.9. Theorem. Suppose that N is a closed connected subset of X and that there exists

a map g: X —> A such that g(X) c N and g is homotopic to the identity of X. Then

X/N is unicoherent.

Proof. Since X/N is normal, by Lemma 1.2, it is enough to prove that if /:

X/N —> S is a map, then / ~ 1. From the hypothesis, we have that / ° h ~ 1 where

h: X —y X/N is the identification map. Let k: X —> R be a map such that

p ° k = f ° h. Then k | N is constant, so there exists a map /: X/N -* R such that

I ° h = k. Then p ° / ° h = f ° h, so that p ° / = /. Therefore, X/N is unicoherent.

1.10. Corollary. If N is a deformation retract of X, then X/N is unicoherent.
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2. Multicoherence of sums. Throughout this section, A and B will denote closed,

nonempty subsets of A such that A n B is connected and A = A U J?. As a special

case of Theorem 7 in [10] we have that if A, B are locally connected, then

4(A) < 4(A) + 4(JS). Theorem 2.1 gives sufficient conditions in order that the

equality 4(A) = 4(A) + 4(J3) holds. This is a generalization of Corollary 7 in [1]

which says that if A is compact, A n B and A are unicoherent, and A D B is

locally connected, then A and B are unicoherent. We will use the following result

which was proved in [7]: If p is any point of A and 3) is the family of components

of A- {/7},then4(A) = IßeS4(5u {/>}).

2.1. Theorem. If A n B is locally connected and unicoherent, then 4(A) = 4(A) +

4(5).

Proof. Let M = A n fl. By Theorem 1.3, 4(A) = 4(A/M), 4(A) = *(A/M) =

4(/?(A)), and 4(J3) = t(B/M) = t(ß(B)) (ß: X -» A/M is the identification map).

Weput {p} = ß(M), ^= [D: D is component of A/M - {p}}, 9A = {D g ^:

D c ß(A)} = {D: Z) is component of ß(A) - {/,}}, and ^fi = {/) g^: Z) c

/?(£)} = {/): D is component of ß(J3) - {p}}. Then

4(A/M)=   I4(J3U{^})=    £   »(DU{/>})+   £   *(^U{^})
De.® 0£^ fleSj

= *OU)) + *(/3(5)).
Hence, 4(A) = 4(A) + 4(5).
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