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CUT-SET SUMS AND TREE PROCESSES

K. I. FALCONER

Abstract. Suppose that an infinite tree has a value assigned to each vertex. We

obtain estimates for the sums of such values over cut-sets of the tree. For certain tree

processes, where the values are given by random variables, we investigate the almost

sure behavior of such cut-set sums. Processes of this type arise in problems

concerning random fractals and flows in random networks.

1. Introduction. In this paper, we introduce a type of stochastic process, termed a

tree process, which in one sense may be regarded as a generalization of a branching

process. Such processes came to the author's attention in connection with problems

on statistically self-similar fractals (see [5, 6, 9]), and problems on flows through

networks with random edge capacities (see [7]). Tree processes should have diverse

applications in modeling situations in which a degree of random replication is

present, such as in root or river systems or in genetic phenomena.

Our main aim is to obtain limit theorems for cut-set sums of certain nonnegative

tree processes, as are encountered in problems of considerable current interest on

finding the almost sure Hausdorff dimension of random fractals and finding flows in

randomly capacitated networks. The work described here represents a considerable

improvement on earlier estimates and methods.

Roughly speaking, we start with a (directed) tree, with vertices represented by

finite sequences of positive integers, with the vertex i = iv i2,..., ik joined to the

vertices ix,i2,...,ik,l, i\, /2, • • -, '¿,2, etc. Each vertex i is assigned a value X¡

which may be regarded as the capacity of the vertex. By the "min-cut max-flow"

theorem a "flow" from the initial vertex to "infinity" through this network is

possible only if the infimum of the sums of the capacities over all cut-sets is positive.

(A cut-set is a set of vertices that separates the initial vertex from the ones at

infinity.) In Theorem 3.1 we obtain sufficient conditions for this to be so.

For the latter part of the paper we take the Xt to be random variables. Our

principal results (Theorem 5.1 and its corollaries) are of the form that if the Xt

satisfy suitable conditions, for example a martingale type condition E(l1fLlXi (. 11Sk)

= X{, then the infimum value of sums such as E,|log Xi\aXi taken over cut-sets / are

positive, provided that a > 1. This is not necessarily the case if the term |log X¡\a is

omitted.
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338 K. J. FALCONER

2. Trees. For each nonnegative integer k let I(k) be the set of all k term

sequences

(2.1) /(*)- (i = (l./t:iyeZ+)

(we make the convention that 1(0) contains the null sequence 0 ). Let T = U ¿°=0 /(ft)

be the set of all finite sequences. Similarly, let

(2.2) A = {a = a,,a2,...: a, G Z + }

be the corresponding infinite sequences. (We observe the convention that sequences

i, j, etc. are finite and a, b, etc. are infinite.)

We let |i| denote the number of terms in the sequence i, and we write i,j for the

sequences obtained by juxtaposition of the terms of i and j.

We partially order T by writing ¡ < j if j = i, q for some sequence q, that is if j is

formed by augmenting terms to i. We use similar notation if i G T and a G A. It is

natural to regard T as a (directed) tree with vertex i joined to vertices i, / for

1 < / < oo.

If i g T, we write ¡(r) for the curtailment of i after r terms, so \(r) < i and

|i(r)| = r. If i, j G T, let i A j denote the maximal sequence q such that q < i and

q < j

We term a subset / of T a cut-set if for every a G A there is a unique sequence

i g / such that i < a, and if there exists k such that |i| < k for all i g /. (The latter

condition avoids logical difficulties and ensures that the cut-sets are countable.)

Intuitively a cut-set separates 0 from the " vertices at infinity." Let J denote the set

of all cut-sets of T. There is an induced partial ordering that makes J into a net:

For /,, I2 g J, we write Ix < I2 if for every i g I2 there exists je/, with j < i (in

other words, Ix separates I2 from 0). Trivially the sets I(k) are themselves cut-sets

with /(Â:,) < I(k2) if kx ig k2.

3. Valuations on trees and cut-set sums. Now suppose that a number X¡ is

associated with each i G T. For any cut-set / we may form the sum

For convenience we write Zk for Z/(A). Our main aim is to investigate the infima and

suprema and limiting properties of cut-set sums. We write

liminfZ/=  lim  inf{ Z,: l(k) < /},
/ k —» oo

limsupZ/=  lim  sup{Z¡: l(k) ^ I).
/ k—» oo

As usual, we say that lim Z, -» Z (in the net sense) if

lim inf   Zf = lim sup Zj = Z.
i i

For the remainder of the paper we assume that the X¡ are nonnegative and

decreasing. That is

(3.1) X; > 0   ifie T,
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and

(3.2) Xi<X,    ifj>¡.

Thus in particular

(3.3) if Xf - 0 then X¡ = 0 for all j > i.

These assumptions hold in the practical examples encountered so far.

To avoid awkward notation to deal with occurrences of "0 • oo," such as in (3.4),

we make the convention that sums over subsets of T are taken over those i g r for

which X{ ¥* 0. Provided that (3.3) holds, this may be done perfectly consistently.

We now prove our basic estimate for infima of cut-set sums in the nonrandom

setting. We relate such sums to a type of "energy function" (3.4). In some ways the

result is a discrete analogue of the relationship between Hausdorff measures and

energy integrals (see for example [4, Theorem 6.4]).

Theorem 3.1. Let <p: R + -> U+ be increasing. Assume that (I¡,¡er) satisfies

(3.1)-(3.2). Suppose that for some constant c

(3.4) E   Ef(Jf,Aj)"l«iJfj<c
|i| = A- m-*

for all k, and

(3.5) lim sup   £ x\ = m > °-
*-»cc      |i| = A

Then

(3.6) inf   L<p(*i)>0.
'^ ¡e/

Proof. Choose À > 0 such that \m - c\ > 0. We show that for every cut-set /

(3.7) I<p(Xi)>O-cA)A>0.
ie/

Given a cut-set / we may find k such that / < I(k) and \m < Em_* X¡. Define

A = li £ I(k): A       X!       A'j > <p(A'i(r)) forsome r < A: >.

Suppose that i G A. Using (3.2) and that <p is increasing we see that for some r < k

£<p(xiAJrV   I »(jt^,)-1^

I'AJI^r

i(/)«:je/(A)

Hence by (3.4)

(3.8) EAi<Xl   IX*,*,)'1*,*,*^
ie/( ie/) |j| = A-
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On the other hand, if r = [j| < k, we have j = i(r) for all i > j, so that

(3.9) <p(Ai)=   Er(U    E   *q
|i| = A \   |q| = A
¡>j q>i('-)

\"x

X;

ÏS A     E     *„
j=Sie/(A)

iC/1

provided that Eiq|=^q>i(0 ^ > 0; if not (3.9) is trivial. Thus, since / is a cut-set,

E<p(a))>xEx,>x( E^i-Ac
je/ |i| = A v Pi—A

i£/<

by (3.8), giving (3.7).   □

4. Tree processes and examples. We now randomize the valuations on the vertices

of T. Let (£2, &, p) be a probability space and let J*"0, J^, J^ ■ • ■ be an increasing

sequence of sub-a-fields of &. Suppose that for each i G T there is a random

variable X¡. We term (X¡)ie7- a tree process with respect to the a-fields (■^rk)k^N

provided that X-, is J^-measurable for all i g I(k).

For the purposes of this paper we shall assume that the tree processes are

nonnegative and decreasing, that is (3.1)—(3.3) hold almost surely. To avoid trivial

cases we also assume that 0 < E(X0) < oo.

We shall be concerned with the random cut-set sums (Zf),Ej: induced by the tree

process (^¡). Clearly, iní¡Zr, liminf/Z,, etc. are immeasurable. We seek conditions

on the tree process (X¡) that lead to almost sure limiting properties for (Z,),ey.

We term a tree process independent if, whenever |i| = [j| and i ¥*j, the random

variables Xit and X¡ . (1 < i, j < oo) are independent. Note that this allows

dependence between Xi; and X{j as happens in some of the applications.

We now discuss some particular type of tree processes to illustrate the situations

that we have in mind and to which the limit theorems of §5 will be applicable.

A. Tree martingales. It is natural to call a tree process a tree martingale L if

(4.1) e\ ZXu\*w\-Xi    (¡er)

and a tree supermartingale if " = " is replaced by " < ."

[If (X{)T is an independent tree (super)martingale, then it is possible to associate a

a-field jm, with each / g J so that (Z,, Jr/)/e> becomes a (super)martingale on

the net J in the generalized sense (see [3, Chapter VI]). Krickeberg [8] obtained

almost sure convergence theorems for these martingales if a certain Vitali condition

is satisfied. However, such a condition is much too strong for our purposes. Indeed,

for the sort of examples that we have in mind, Zt is not in general a.s. convergent.

Moreover, with our definition of independence, this approach becomes notationally

cumbersome, and, in any case, we prefer to be a little more general.]
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We record the following easy lemma and corollaries.

Lemma 4.1.   Let  (Xv!Fk)  be a tree  (super)martingale.   Then  (Zk,tFk)  is a

( super)martingale.

Proof. The measurability condition is clear.

00

Za+i = E E Xu
|i| = A, = l

so by (4.1)

E(Zk + l\&k) =   E£(E*í,I^a)=   L*i = Zk.
|i| = A      U-l / |i| = A

For a tree supermartingale equality is replaced by inequality.   D

Corollary 4.2. Let (X¡, !Fk) be a tree (super)martingale. Then for each fixed i

is a (super)martingale.

Proof. Apply the lemma to (^¡j)j<=r regarded as a tree (super)martingale in its

own right with respect to the a-fields (^k + \i\)k^N-   a

Corollary 4.3. Let (XK,&k) be a nonnegative tree (super)martingale. Then

Z = limA.^x Zk exists a.s. with 0 < E(Z) < E(X0).

PROOF.This is immediate by an application of the martingale convergence theorem

to(Zk,&k).    D

In the independent case, a very similar argument shows that the limit limr_00 Z,

exists almost surely for any given increasing sequence of cut-sets Ir.

Thus it might be hoped that, for a tree martingale, lim, Z, exists in the net sense

almost surely. Unfortunately, this is not in general the case, as example C below

shows (see also [6, Remark 6.12]). Thus the questions of interest revolve around how

close we get to net convergence of these sums.

B. Branching processes. Let N be the progeny distribution of a Galton-Watson

branching process. We may regard the branching process as an independent tree

process by letting !Fk be the a-field underlying the first k generations, letting

X0 = 1, and for each i G I(k) with X¡ = 1 letting

(1     (1KKN),
"•'     (O    (JV<i)

for independent realizations of N. (Of course, Xti = 0 if Xi = 0.) Then (X^j is an

independent tree process, and if E(N) = m then (X{m~w)T is a tree martingale.

C. Self-similar tree processes. Processes of this type underlie the Hausdorff

dimension calculations related to certain random fractals (see [5, 6, 9]). For this

application Xi is the Jth power of the diameter of an interval indexed by i in a

generalized Cantor set construction.
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We term a tree process ( X¡)T self-similar if

(a) the r.v. sequences

(4.2) (Xu/Xl,Xia/Xt,...)

are independent and identically distributed for each ¡ and independent of Jr¡,,

whenever X¡ =£ 0,

(b) X0 = 1 a.s.

(Condition (b) is by no means essential; however, it allows us the convenience of all

of the sequences (4.2) having the distribution of (Xx, X2,...).) Thus a self-similar

tree process is independent, but of course we do not require that X¡f and X^¡ be

independent for given i.

Clearly, if E(L?=1 X¡) = 1 then (X¡) is a tree martingale.

As with branching processes, there is a possibility of "extinction" of self-similar

tree processes. Let q be the unique number in [0,1] satisfying

00

q =   £/>(#{/: Xi>Q)=k)qk.
A = 0

Thus q is the extinction probability of the (self-similar) Galton-Watson process

given by attaching an individual to the vertices of T for which X¡ > 0. As usual, if

Ejlj X, > 0 a.s. then q = 0, and if E<£%.xXt) > 0 then q<\.

Part (b) of the next lemma was first proved by Graf [6] in the fractal context.

Lemma 4.4. Let ( X¡, J^) be a self-similar nonnegative tree martingale. Then

(a) Z = limA. _oo Zk exists and is finite a.s. With probability q we have Z, = 0 for

all I > /( k ) for some k, and with probability 1 — q we have Z > 0.

(b) Provided that Y.fLi X¡ is not a.s. constant, then

inf Z, = liminf Z, = 0,
/eji /

and, with probability 1 — q,

sup Z, = lim sup Z, = oo.
leJ 1

Proof, (a) This is established without difficulty by the standard method for

treating the extinction probability of a branching process (see [1, §1.5]).

(b) Define the r.v. W = inf/^Z,. It follows from the self-similarity conditions

that the r.v.'s

W,= inf  E*,¡/*,
/G/ ie/

have the distribution of W for each i whenever X¡ > 0. Then W = min{l,E, X¡W¡}

and hence

E(W) < e(j:x,w\ = Y,E(X,)E(W,) = E(YiXi)E(W) = E(W).
i i

Equality therefore holds, so W = E, XiWi a.s. and

ess sup W =   ess sup E X¡ (ess SUP w ) ■
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Hence either ess sup E, Xj = 1 which would imply that E, X¡ = 1 a.s., since £(E, X,)

= 1, or else W = 0 a.s., as required.

It follows that E|ji=A inf¡ e, Xit = 0 for all k, so that lim inf/ Z, = 0.

A similar argument, admitting the extra alternative that E(\ni,eJZ,) is infinite,

deals with the "sup" case.    G

Many of the standard results on branching processes [1] may be extended without

difficulty to nonnegative self-similar tree processes.

D. Recurrent processes. This is essentially a generalization of the previous

example. It is related to the Hausdorff dimension calculations of the randomizations

of the fractals discussed by Bedford [2].

Let i bea positive integer and let S be a subset of {1,2,...,s] X {1,2,...,s}.

We assume that S satisfies a " transitivity" condition in the sense that if 1 < i, j < s

there is a sequence ; = ix, i2,..., ik = j with (ir, ir+1) G 5 for 1 < r < k — 1. Let

B = {i = /,, i2.ik e T: (1, ij) g 5 and (/',., ir+1) g S for 1 < /- < k - 1}. Let

YVY2,...,YS be given positive r.v.'s. We define a tree process as follows: Take

X0 = 1. To start the process, let X¡ = 0 if (1, /") £ S, and Xi be given by indepen-

dent realizations of Y¡ if (1, i) G S, with .fx as the underlying a-field. Given ¡Fk,

k > 1, let X¡ = 0 if i e I(k + l)\B. Foreachi = ii,i2.---»»it»'*+i e J(* + 1) O JJ

take independent realizations of Y and let X, , , = X , K ; this defines

^k + x. Thus ( A'j, ¿Fk) is a tree-process.

Let A be the s X j matrix with a, E(Yt) if (;', y') G 5, a,.. = 0 otherwise. Then

(0\

IJI = A
A E*.jl^iii)-(i.i.iM*

irth place

o
i
0

10/
where i = iv i2./,.. If i = 0 then the column vector has entry 1 in the first place.

In particular

ill

e( E^) = (i.i,...,iM'
'HI-A

0

o
Let p > 0 be the largest absolute value of the eigenvalues of A. If the eigenvalues of

maximum modulus all have equal algebraic and geometric multiplicities then there

are constants 0 < q, c2 < oo such that

(4.3) c.X^p-'E    E 4l^,U^i
lil-A

for all i,  J^¡|, and k. Although Y.^=kX¡ does not in general converge, one can

nevertheless show that, under the conditions given,

0 < lim inf p  A E x\ < lim sup p~* E X¡ < oo
k^x |i| = A A —oo |i| = A

almost surely.
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5. Almost sure behavior of cut-set sums. We now apply Theorem 3.1 to the

situation where the X¡ are the random variables of a tree process. As always we

assume that the process is nonnegative and decreasing.

Theorem 5.1. Let (X¡,¿Fk) be an independent tree process such that for some

1 < m < oo

(5.1)

and

(5.2)

II-*
E\  E*i,jl^|i|)<mXl       (£ = 1,2,...)

\N   i

i +^   IT» +

2X,.  ftMi

for all i and P.». Let cp: M   —» R + be increasing and suppose that

Ze JX*,)"1*,2 <oo.(5.3)
A = 0      \|>l = *

Then inf/e^Eie:/(p(A'I) > 0 a.i. whenever

lim sup   E X{ > 0.
A^oo      |i| = A

Proof. We estimate the expectation of the expression (3.4) to enable us to apply

Theorem 3.1. First observe that if |q| = q and s > 0 then

eÍllÍÍL xqJ(L xqjW+l)

= EE¿( E x^,\^+x)e[ E *q,7j<l^+i
•*) V|i'l = s '      lli'l = ̂ '

by (5.1). Hence

(5.4)

by (5.2). Since

< ™2EE*q„*q,/
i*J

1EE   E*q,„iJ E^lll^
\   i+j   \v|i'l=i /v5'l=-«

<m2E  (E*q,)V?]

(5.5)       E    L?(^,M)    Pi
|i| = A 5| = A

e'e<p(^)"EE(     E     *„,-,)      £     *,.,*
</ = 0 |q| = <¡r

+ E vW1*,,2
hi-*

'•"»7   M¡'l = *-<y-i ¡n-*-<?-i
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it follows from (5.2) and (5.4) that (5.5) has unconditional expectation bounded by

m3T,kl/=0 E(Lw=il<p(Xi)~1Xi2). Hence (5.5) is almost surely bounded in k, by (5.3),

and the conclusion follows by Theorem 3.1.    D

The interpretation of condition (5.3) becomes clearer in the following corollary.

Corollary 5.2. Let (X{,^k) be an independent tree process such that (5.1) and

(5.2) hold. Suppose that for some 0 < y < 1 we always have

(5.6) X,,,<V*i-

Suppose that \p: R + -> U+ is a decreasing function such that t <-* t\p(t) is increasing

and

(5.7) f -^— < oo.
'                                               Jo tUt)

Then

(5.8) inf   E*U)*i>0
/eJiie/

and

(5.9) liminf E»H*¡)*i = °°
' ie/

a.s. whenever

lim sup   Z X¡> 0,
*->oo      |i| = A

andfurther, a.s.

(5.10) limsup  Etf(*,)_1 *, = ().
/ ie/

Proof. Let <p(t) = tty(t). Then tp is increasing, as is the function t >-» <p(t)~lt, so

by (5.6)

00 / \ 00 /

E£ EfW'jfU E<p(yTV¿ E*i
k = 0     \\i\ = k i k = 0 \ \i\ = k

00

< E^yTV^W
A=0

by (5.1). But this series converges using (5.7), and so (5.3) holds. Thus (5.8) follows

from Theorem 5.1. To get (5.9) we apply this result using a function \¡/v chosen so

that \iml^04>x(t)/ip(t) = oo but so the other hypotheses remain true for tpx.

Finally, (5.10) follows from (5.3), noting that

oo

sup  E*(*í)_1aí< E E tW1^.     □
/>/(*)  ie/ q-k |i| = i/

The conditions for \p in the corollary are satisfied by functions such as (log ~)a,

log y(loglog j)", etc. provided that a > 1.
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Theorem 5.1 and Corollary 5.2 are applicable to many of the situations discussed

in §4. For example, (5.1) is rather weaker than the (super)martingale condition (see

Corollary 4.2), and also holds for the recurrent processes where p < 1 (4.3).

Condition (5.2), which controls the variances of E, Xu, is automatically satisfied for

self-similar tree processes if £((E¡ X¡)2) < oo, with a similar situation for recurrent

processes. Two particular cases are covered by the following corollaries.

Corollary 5.3. Let (X{,?Fk) be a self-similar independent tree martingale such

that £((E, Xi)2) < oo and always 0 < X, < y < 1. Let >// be as in Corollary 5.2. Then

(5.10) holds a.s., and a.s. either Xi = 0 for all i with ¡i > k for some k, or (5.8) and

(5.9) hold.

Corollary 5.4. Let (X¡, J^) be an independent recurrent process (as in §4D) with

p = 1. Suppose that 0 < Y¡ < y < 1. Then if \p is as in Corollary 5.2, (5.8)—(5.10)

hold a.s.

A consequence of Corollary 5.3 is that the statistically self-similar fractals of the

form shown in [5, 6, 9] to have almost sure Hausdorff dimension d, must almost

surely have infinite Hausdorff measure with respect to the measure functions

h(t)= td{\og\)a, h(t)= td\og j(loglog})a, etc. for any a > 1.

6. Concluding remarks. Clearly this paper raises many more questions than it

answers. How far can the conditions in Theorem 5.1 and its corollaries be relaxed?

What are the exact critical functions \p for the lower and upper limits of the cut-set

sums to be positive and finite? To what extent can be independence conditions be

weakened?—certainly to some extent, but not completely. What about the limit

behavior of tree processes allowed to take both positive and negative values? Can the

ideas be extended to continuous parameter tree processes?
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