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ABSTRACT.  The following theorem is proved for any prime p:

Every irreducible rational represention of a finite p-group is the difference of

two transitive permutation representations.

Also given are two useful results about representations of p-groups, which

are known to experts in the field.

1. Statement of results. Presented here are three results about characters

of finite p-groups. The first two are probably known to people familiar with the

subject. The first follows directly from a theorem of Solomon [7, p. 156, Theorem

4] and the second from a generalization of this in Feit [2, p. 73, 14.3], Since they

do not seem to have been stated and proved explicitly our purpose in doing so here

is to make them available to a wider audience.

The third result generalizes a theorem of Graeme Segal [6] that may not be well

known among group theorists. As Segal states in his paper, Feit has observed that

this theorem may be proved using the result above. We present such a proof here

and obtain the following result.

THEOREM. An irreducible rational representation of a finite p-group, p a prime,

is the difference of two transitive permutation representations.

Let Q denote the rational field and QG the rational group algebra of a finite

group G. Let p be a prime number. Gal denotes a Galois group. [X2 : Xi] denotes

the index of Xi in X2 for either fields or groups. Absolute value bars denote order.

All groups are finite here.

THEOREM 1. Let G be a p-group and x an irreducible complex character of G.

Then one of the following holds:

(i) There exists a linear character X on a subgroup H of G which induces x <md

generates the same field as x; that is \G = x and Q(^) = Q(x)-

(ii) p = 2 and there exist subgroups H < K in G with \K : H] = 2 and a

linear character X of H such that with ç = XK,   [Q(X) : Q(c)] = 2, cG = x, and

Q(i) = Q(x)-

THEOREM 2. Let G be a p-group and x an irreducible complex character of G

for which the Schur index m,Q(x) — 2- Then G contains a generalized quaternion

section. More specifically there is an irreducible character ç on a subgroup K of G
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for which çG = x, Q(ç) — Q(x) zs a subfield of the real field, and the image of K
under a representation affording C is a generalized quaternion group.

THEOREM 3. Let G be a p-group and 6 the rational valued character of G

obtained as the sum of the algebraic conjugates of an irreducible complex character

X- Then there exist subgroups Gi < G2 in G with [G2 : Gi] — p such that 6 =

(\/m)(XG — XG) where A¿ is the principal character on Gi and m = ruQ(x) (m is 1

if p is odd and 1 or 2 if p = 2). In particular each irreducible rational representation

of G is the difference of two transitive permutation representations.

The last statement of the theorem follows with multiplication by m from the

fact [2, p. 62, 11.4] that the characters of irreducible QG modules are all of the

form mç(x) J2xa, summed over the conjugates of irreducible complex characters

X- Segal's theorem states that every such character is an integral linear combination

of permutation characters.

The Schur index mg(x) can be defined as the smallest integral multiple of the

rational valued character Ô = J2 x" which is afforded by a QG module. It can be

shown to divide the smallest multiple of 6 which can be expressed as an integral

linear combination of permutation characters. See for example the argument of

Feit in [1, p. 294].

It is natural to consider here the Artin induction theorem [2, p. 69, 13.2] which

asserts that for every rational valued character of a group, some integral multiple

is an integral linear combination of characters induced from principal characters of

cyclic subgroups. One could call the smallest such multiple the Artin order of the

character. T. Y. Lam [5] has defined the least common multiple of such orders to

be the Artin exponent of the group and has shown [5, p. 110, Theorem 6.3] that

even for p-groups, these orders can be quite large. One could define the order more

generally by removing the restriction that induction be from cyclic subgroups and

allow any subgroup. Segal's theorem asserts that for p-groups, this order is the

Schur index.

2. Proofs of Theorems 1 and 2. We begin by restating Feit's result in the

special case of a p-group.

THEOREM A. Let G be a finite p-group and \ a nonlinear irreducible faithful

character of G. Suppose G does not contain a cyclic subgroup of index 2. Then

there exists a character p on a subgroup F of index p in G for which pG = x and

Q(ß) = Q(x)-

Observe that p must be irreducible since it induces an irreducible character.

Consider now the exceptional case in this theorem, when G is a 2-group which

contains a cyclic subgroup H of index 2. If G is abelian then all the irreducible

characters are linear. If G is nonabelian there are four possibilities: generalized

quaternion, dihedral, semidihedral, and M„(2) (see Gorenstein [4, p. 193, Theorem

4.4]).

For all such groups a faithful irreducible character c has degree 2 and is induced

from a faithful character A on the cyclic subgroup H, according to Feit [2, p. 63,

11.6]. It is not difficult to see that [<2(A) : Q(ç)] = 2. If G is not generalized

quaternion there is an element of order 2 lying outside H.   For such G Feit has
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shown that Mq(c) = 1 [2, p. 64, 11.7], while for a generalized quaternion group

mQ(c) = 2 [2, p. 64, 11.8].

We now proceed to a proof of Theorem 1. Thus G is a p-group with irreducible

complex character x- If X ls linear the theorem is trivially true, so assume \ 1S

not linear. Suppose first that G has a cyclic normal subgroup of index 2. Then

our discussion above shows alternative (ii) holds with K = G and c = x and the

theorem is proved in this case. Next suppose that G does not contain a cyclic

subgroup of index 2. Then Theorem A gives a subgroup F of index p with an

irreducible character p for which pG — x and Q(p) = Q(x)- Although p need not

be faithful, by induction on the order of the group we assume the theorem holds

for the image of F under a representation affording p. Whichever alternative of the

theorem holds for this group will also, by transitivity of the induction of characters,

hold for G and Theorem 1 is proved.

Now we prove Theorem 2. Apply Theorem 1 to a group G and character x

satisfying the hypotheses of Theorem 2. Were alternative (i) to hold then AG = x

would give a representation affording x in the field of values of A, and <5(A) = Q(x)

would give toq(x) = itiq(X) = 1, contrary to assumption. Thus alternative (ii)

must hold. Again Q(ç) = Q(x) gives that mç(ç) = mç(x), so our hypotheses

imply that mg(^) = 2. Consider the images of H and K under a representation

affording ç. It is not difficult to see that A and ç have the same kernel, and since A

is linear, the image of H is a cyclic subgroup of index 2 in the image of K. From

our discussion earlier, the fact that mç(ç) — 2 forces this image to be a generalized

quaternion group. The assertion that Q(ç) is a real field follows from the fact that

c vanishes off h and on H has value A + A (see [2, p. 63, 11.6]). Theorem 2 is

proved.

Proof of Theorem 3.  We need the following Lemma for Theorem 3.

LEMMA. Let G be a cyclic p-group of order pn > p. Let X be a faithful linear

character on G. Let p = ^ Xa be the sum of all the conjugates of X under the

action ofGa\(Q(X) : Q). Then p = XG — XG, where Ai is the principal character on

the identity subgroup, and X2 is the principal character on the subgroup Z of order

V-

PROOF. The order of the Galois group is pn-pn~1. Therefore p(l) = pn-pn~1.

Let g in G have order pk. Then p(g) is pn~k multiplied by the sum of the distinct

conjugates of a primitive pk root of unity. For k > 1 this sum is zero and for

k = 1 it is — 1, as can be seen by investigating the cyclotomic polynomial. Thus

p(g) = —p"-1, g 9¿ 1, for g in Z and p(g) = 0 for g outside Z. The Lemma now

follows because A^ takes value pn on the identity and vanishes elsewhere, and XG

takes value p"_1 on Z and vanishes elsewhere.

We now prove Theorem 3. We have 6 = J2x° w'th the sum taken over

Gal(<2(x) : Q)- Suppose alternative (i) of Theorem 1 holds for G and x- Then

X = XG for a linear character A on a subgroup H. Let Gi be the kernel of A and

G2 the subgroup of H with [G2 : Gi] = p. Let A, be the principal character of G%.

We now apply the Lemma to the image of H under A, using the fact that all the

algebraic conjugates of A have the same kernel, and conclude that ^2 Xa — X\^ — X2 .
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But since conjugation and induction commute and are both linear

' - £ xa = (E rf = (A? - X")G = x°- *?■

The two summations are over the same Galois group because Q(X) = Q(x)- This

completes the proof for alternative (i).

Now suppose alternative (ii) holds. Then there exist subgroups H and K in

G with [K : H] = 2 and a linear character X oí H such that XK = c, <G = X,

\Q(X) :Q(<)] = 2, and Q(c) = Q(x)- m this case there is a unique correspondence

between conjugates of c and conjugates of \ and we have

where the sum is over Gal(<3(c) : Q). However c\H = X + XT where r gener-

ates Gal(<2(A) : Q(c)). Therefore J2^\h = J2^° where the latter sum is over

Gal(Q(A) : Q).
Since c is irreducible the image of K under a representation affording c is one of

the four nonabelian groups discussed earlier. If mq(x) = 2 this group is generalized

quaternion. We consider this case first. If we let Gi be the kernel of A and G2

the subgroup of H with [G2 : Gi] = 2 as we did in alternative (i) above, then the

Lemma implies that

If we now induce further up to K we claim that Af — Af — 2J2 ç"'. This follows

with Frobenius reciprocity

(çjv,XlK-X2K) = (ç»\„,Xr:-X») = 2

because each ç"]h = Xu + XUT contributes two linear characters to J2 À" = A(^ — A^.

Induction from K to G gives

A?-A« = 2(Xy)G=20.

Dividing by m — 2 proves the theorem in this case.

In the remaining cases, mç(x) = 1 and the image of K under ç is either dihedral,

semidihedral, or of type Mn(2). Unlike the generalized quaternion group, each of

these is a semidirect product of a cyclic group, the image of H, with a group of order

2. We will identify H and K with their images under a representation affording

c and assume K = HB where H is cyclic of order 2" and B has order 2. In the

generalized quaternion case we defined Ai and A2 on subgroups of H. Eventually

we were forced to induce from H to K, which produced the coefficient 2. We will

avoid this in these remaining cases by including B in the kernels of Ai and A2. Let

Gi be the subgroup whose image is B and G2 the subgroup with image BZ. Let

A¿ be the principal character of G,.

Our goal is to prove that J2çu — Af- — X2 , for then the theorem will follow

by inducing these characters from K to G, as we did in alternative (i). It follows

from the Mackey subgroup theorem [1, p. 324, 44.2] that Af |# = (Xi\nnB)H — *t

where jfj is the principal character on the identity subgroup. Similarly Af \h — ̂ 2
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where 7T2 is the principal character on Z. According to the Lemma, ^2 Xer =

irf — 7rf. Thus we have

£çn„ = £Aff = ^-^ = (Af-Af)|„.

This shows that the equation Y, $" = ^f _ Af holds on H. We must now show

it holds on K \ H. Since ç vanishes off H, and consequently so does J^ç", we

must show that Af — Af also vanishes off H. This will require a separate analysis

of each case. Let h,b, and z be generators of H, B, and Z respectively. Then

|A| = 2*, |6| = |z| =2, and z = h2"'1.

Consider first the dihedral case where b~1hb = h^1. A calculation shows that

h~*bh — bh2. Thus outside H there are two conjugacy classes, one containing

products of b with the odd powers of h and the other b with the even powers of

h, including b and bz. Now Af is induced from B and vanishes on the conjugacy

class not containing b. The centralizer C(b) of b is BZ. It follows that Af (6) =

|C(6)|/|6| = 2. Since Af is induced from BZ it also vanishes on the class not

containing b, and Af (b) — 2 because there are two coset representatives of ZB in

K which conjugate b into BZ, namely 1 and h2 . Thus Af and Af agree outside

H and the difference Af — Af vanishes outside H so we have completed the proof

for the dihedral case.

In the semidihedral case b~lhb = h~1z and h~xbh = bh2z. The two conjugacy

classes of the dihedral group lying outside H are closed under multiplication by z

so one can see that they are also conjugacy classes of the semidihedral group. The

proof in this case is essentially the same as for the dihedral case.

Finally we consider K of type Mra+i(2). Here b~lhb — hz and h~xbh = bz.

Outside of H there are 2n_1 conjugacy classes each with two elements, one being

z times the other. Both characters Af and Af can have nonzero value only on the

class consisting of b and bz since only this class intersects the subgroups B and BZ.

Now Af (b) = \C(b)\/\b\ = 2"/2 = 2n~1 because C(b) is the subgroup generated

by h2 and b of order 2". Since BZ is a normal subgroup K, Af has kernel BZ.

Therefore Af (b) = [K : BZ] = 2n_1. Again we have shown Af — Af vanishes

outside H which completes the proof of the theorem.

The quaternion group of order 8 illustrates the necessity of the denominator 2

in the theorem. The irreducible character of degree 2 is one-half the difference of

the characters induced from the principal characters on the identity and the center

of order 2.

4. A special case. There is a somewhat different version of Theorem A that

has appeared in Ford [3, p. 627, Lemma 1] and Yamada [9, p. 299, Proposition

1] and probably orginates in Witt [8]. Comparing the two versions leads to the

following situation. Let H and A be cyclic groups of order p" and pa respectively,

with a < n — 1 if p is odd and a < n — 2 if p = 2. There is a subgroup of the

automorphism group of H which is isomorphic to A, and we let this define a faithful

action of A on H. This makes HA into a semidirect product. If p = 2 we assume

that A fixes the element of order 4 in H. This excludes generalized quaternion,

dihedral, and semidihedral groups.

The center of HA is the subgroup Z of H of index pa. Let //bea faithful linear

character on H.   Let x = pHA-   One can show that \Q(p) : Q(x)} = Va■  There
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must exist a linear character A inducing x with Q(X) — Q(x)- The following works:

choose A a character on ZA which is faithful on Z with kernel A. To see that

XHA — x apply the Mackey subgroup theorem

PHA\za = (p\zAnH)ZA = (p\z)ZA-

Now calculate the inner product

(pHA,XHA) = (PHA]ZA,\)ZA = ((P\Z)ZA,X)ZA = (P\Z,X\Z)Z = 1.

Since pHA is irreducible and has the same degree as XHA the two are equal.

Starting with character x, repeated application of Theorem A would yield char-

acter A. However applying this different version could yield p. We have shown here

how to make the transition between the two.

I wish to express thanks to Gerald Janusz for some helpful conversations during

the preparation of this paper.

Addendum. The main theorem has the following corollaries.

THEOREM. Each irreducible rational representation of a finite p-group is in-

duced from the irreducible faithful rational representation of degree p —1 on a section

of order p.

In the case p = 2 this reduces to the following result.

THEOREM. Each irreducible rational representation of a finite 2-group is in-

duced from the faithful linear character on a section of order 2.

To prove the first theorem, we have shown that the character of such a represen-

tation can be written as the difference XG — XG where Ai and A2 are the principal

characters on subgroups Gi and G2 respectively with Gi a subgroup of index p in

G2. By first inducing to G2 and then to G this can be written as (Xx 2 — A2)G-

Now Aj2 is the regular character of degree p and A2 the principal character on the

quotient G2/G1. This difference is the character of the faithful irreducible rational

representation of degree p — 1 on G2/G2 which is a cyclic group of order p. This

proves the assertion.

As a special case of the second theorem we note that the faithful rational 4-

dimensional representation of the quaternion group of order 8 is induced from the

faithful linear character on the center of order 2.

ADDED in PROOF. The method of proof used here is also used by John R. Ras-

mussen in Rationally represented characters and permutation characters of nilpotent

groups, J. Algebra 29 (1974), 504-509.
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