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ABSTRACT. In this note we give a new criterion guaranteeing the uniqueness

of a minimal norm representative of a bounded linear operator which com-

mutes with a finite multiplicity shift. We moreover give examples which show

that if the hypotheses of our theorem are violated then the minimal norm

representative may not be unique.

Introduction. In this note we give a new sufficient condition guaranteeing the

uniqueness of minimal norm representative of a bounded linear operator in the

commutant of a contraction of class Co(n) (see (1.1) below for the precise definition).

The results discussed here complement some previous work of the authors [5] on

the classical Nehari problem. Before explaining more precisely our main theorem,

it will first be necessary to set up some notation and make some definitions. Let £

denote a finite dimensional normed complex vector space. Then Hp(£) will denote

the standard pth Hardy space of cf-valued functions on the unit circle D equipped

with the norm || ■ ||p induced from the norm of Î for 1 < p < oo.

Explicitly, if || • || £ is the norm on £, then

\\h\\*-.= ^fj\\h(ei9)\\p£d6

for 1 < p < oo, and

||n||oo = esssup{||/i(e'fl)||£: 0 < 9 < 2tt}.

For £ = C, we set Hp := HP(C). Following [14], we now make the following crucial

definition.

DEFINITION (1.1). Let T be a contraction on a complex Hilbert space H. Then

we say that T is of class Co(n) if the defect operators of T have rank n (< oo), and

if there exists a nonzero function u G H°° such that u(T) = 0. (We are using the

functional calculus notation of [14] here.)

This implies that T is the compression of shift of finite multiplicity to the or-

thogonal complement of an invariant subspace of the shift. Indeed the functional

model for the operator T has the form

(1) T^PHS\H,        H = H2(Cn)oQH2(Cn)

where Q is inner, S denotes the unilateral shift on H2(Cn). and Pu : H2(Cn) —» H

denotes orthogonal projection.    (We will identify H with H2(Cn) Q ÜH2(Cn)
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throughout this paper.)  We can now state the following special case of the "corn-

mutant lifting theorem" ([12]; see also [13, 14]).

THEOREM (1.2) (NOTATION AS ABOVE). A bounded linear operator A: H -*

H commutes with T (i.e. AT = TA) if and only if there exists W G H°°(CnXn)

such that A = PuW\H. Moreover in this case, we may find W G i/°°(Cnxn)

with A = PuW[H and such that ||W^||oo = ||A||. (Note that we are using the

identifications of(\) in the statement of Theorem (1.2). We regard W as an operator

on H2(Cn) via (Wg)(z) := W(z)g(z).)

Now such a function W as given in (1.2) is called a minimal norm representative

of A in the sense that W has minimal ü°°-norm among all the functions {W G

H00(Cnxn): A = PuW[H}. Of course, there is no reason to expect that a minimal

norm representative will be unique, and indeed for vector-valued functions (n > 1),

it is usually the case that the representative will not be unique. This important issue

of uniqueness has been studied in a number of places, e.g. in Adamjan, Arov and

Krein [1, 2], Arsène, Ceausescu and Foias [3], and Sarason [12]. The contribution

of the present work (see Theorem (2.1)) is to give a new simple and generally

applicable criterion guaranteeing that some W will be unique.

We should note that our interest in studying the uniqueness of the minimal norm

representative is not only motivated by purely mathematical reasons. Indeed this

question is intimately related to certain important design methods (so-called "ü°°-

optimization theory" ) that have become pervasive in control engineering in the past

few years. The uniqueness of W is equivalent to the uniqueness of a certain optimal

controller solving a weighted sensitivity problem for a possibly infinite dimensional

dynamical system. See [5-10, 15, 16] for details. We should add that Theorem (2.1)

taken in conjunction with the authors' results in [5], gives a fairly comprehensive

design procedure for the broadest class of systems of current interest in control

theory.

Finally in §3, we will give some examples which show that violation of the

hypotheses of Theorem (2.1) can result in a minimal norm representative being

nonunique even in the scalar case (n = 1).

2. The uniqueness of the minimal norm representative. In this section

we formulate and prove our main result about the uniqueness of the minimal norm

representative of an operator commuting with an operator of class Co(n). Before

doing this however, we will have to introduce some additonal notation.

For a given bounded linear operator A on the Hubert space H, eress(A) will

denote the essential spectrum, and

Pess(A) := sup{|A|: A G aess(A)}.

the essential spectral radius. Let w G H°° be a scalar-valued function. Let T be a

contraction of class Co(n) on H, and let I denote the n x n identity matrix. Then

making the identifications of (1) of the Introduction, we set w(T) = Pu(wI)\H

where we regard wl as an operator on H2(Cn) in the obvious way. This agrees

with the functional calculus notation of [14].

We are now ready to state our main result.
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Theorem (2.1) (Notation as above). LetweH°°, and suppose thatw

is continuous on aess(T). Set A = W(T). If \\A\\ > pess := pess(A), then the norm

of A is attained, and for a minimal norm representative W G H°°(Cnxn) one has

\\W(el6)\\ = \\A\\ a.e. Moreover, in this case if a minimal norm representative is of

the form Wil where wz G H°° (i.e. Wi is scalar-valued) and I is the n x n identity,

then Wi is unique.

PROOF. Without loss of generality we may assume that ||A|| = 1. Let W

be a minimal norm representative of A.   Then by definition, A = PuW[H, and

Halloo = ||A|| = 1.
In this case, there exists a sequence hj G H, \\hj\\ = 1 such that ||A/ij|| —► 1 as

j —» oo. Notice that

(2) 0< ^ 1^ {hj(eie),(I -W(earW(ei6)hj(wi(>))d0

= i - \\whjtf < i - ||(/W)M2 = i - PM2 - o

as j —► oo. (We are denoting the standard inner product on Cn by ( , ) and the

Hubert space norm on Ü2(C") and H by || • ||.)

Next by a theorem of Foias and Mlak [4] (see also [11]), we have that

aess(A) = {w(X): Xeaess(T)}.

(Note that we have assumed that w G H°° and w is continuous on tress(T).)

We claim

(3) dD£oess(T).

(dD denotes the unit circle.) Indeed suppose to the contrary that 3D = aess(T).

Then we would have that

Pess = sup{|w(A)| : A G cress(T)} = ||W||oo

= sup{|w(A)|: A G dD},

contrary to hypothesis, since ||w||oo > ||A|| > pess. Hence (3) is valid.

Now we may assume without loss of generality that hj —► h weakly in H. But

then from Sz.-Nagy and Foias [14] (see Chapter VI, §4) if follows that hj(X) —> h(X)

uniformly on compact subsets of some fixed open neighborhood of £>U((9D\(Tess(T)).

Let e > 0, s « 1, and set

ae := {9 G [0, 2tt] : I - W(el6)*W(el6) > e2I}

where I is the n X n identity matrix. From (2), we see that

/J (7,

(hj(eie),hj(eie))d9 -* 0    as j'-* oo.

Thus from the above, we have that for any function k G Ü2(C"),

(4) ¿ C{hÁel9)'k{el6)) d6^h C{h{eie)'k{el6)) de

as j —* oo, and

(5) |¿ r(h(eie),k(eie))d$    <~í \\k(e^)[\2d9.
I 2-K Jo 2it J\o,2-k\\oc
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Clearly (5) implies that h(el6) = 0 almost everywhere on ae. We now claim that

h ^ 0. Note that once we have proven this claim, we are done. Indeed certainly

if ft ^ 0, then the norm of A is attained, i.e. ||Aft|| = ||A||. Moreover if ft ^ 0,

then aE has measure zero for every sufficiently small e > 0, and this means that

l!^^'0)!! = L a.e. But then it is easy to see in this case that if W — wil with

wi G H°°, this wi must be unique.

So we must prove now that ft ^ 0. Suppose to the contrary ft = 0. Then let B$

be the ball on dD centered on cTess(T) of radius 6. Clearly h3(et6) —> 0 (as j —» oo)

uniformly on 3D \ Be. Hence

iH|AM3<HM|3

= ¿/ \w(e^)\2(hJ(e^),hJ(e^))d9

+ *=[ \w(e^)\2\h3(e^)\2d9
¿* J{e<°<tBs}

<    sup   Hee")|2 + i- / \w(eee)\*(hj(ei9),hj(ei8))d0
e'e€Bs *KJ{ei»eBc}

—>    sup   |w(ete)|2    as j —* oo.
e'*>€B6

But this implies

(6) 1 <   sup   \w(eie)\2.
e'e€B6

On the other hand, we clearly have that

(7) sup   \w(el6)[2 - Pess(w(T)2) = pess(A2) < 1
e's€B6

as 6 —► 0. (Note that pess(A2) < 1 since by hypothesis pess(A) < ||A|| = 1.) Hence

from (6) and (7) we have arrived at a contradiction proving our claim that ft ^ 0,

and so the proof that the norm of ||A|| is attained and that ||W(etô)|| = ||A|| a.e. is

complete.

Finally the uniqueness statement follows now from the fact that if wil is a

minimal norm representative for A then by virtue of the already proven result,

tfi/||A|| need be an inner function in H°°.

REMARKS (2.2). (i) Note that in the scalar case (when n = 1), the above

argument shows that if ||«;(T)|| > pess(w(T)), then a minimal norm representative

is unique.

(ii) When w G H°° is rational, and for T the compressed shift on H2QmH2 (m G

H°° inner and nonconstant), the authors have in [5] devised a method for explicitly

computing ||iu(T,)||.

3. Some examples. In this section, we will take T to be the compressed

shift on H2 0 mH2 where m G ü°° is a nonconstant inner function. We will give

two examples in order to illustrate the point that even in the scalar case, if the

hypotheses of Theorem (2.1) are violated, then a minimal norm representative may

not be unique. See also Sarason [12] for an example of a nonunique representative

function. All the functions in this section are s calar-valued.
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EXAMPLE (3.1). In this first example we violate the hypothesis that ||w(T)|| >

Pess of (2.1). Explicitly, let

i \ fz + 1\ t \       1+zm(z) := exp I —- 1 ,    Wi(z) := —— !

w2(z) := Wi(z) + \m(z)(\ - z)2.

Clearly \\wiWoa = 1, Wi(T) = w2(T), and ||wi(r)|| = 1 = pess(wx(T)). Moreover

Wi and W2 are continuous on aess(T) = {1}.

Now we claim ||w2||oo = 1- To see this note

\w2(eie)\ <
l + el

2

for 0 < 9 < 2tt. But this implies

+ ^U-eIT = cos.2 + hsmU

IKI|oo=    sup    \w2(el6)\ = |«/2(1)| = 1
fle[0,27r]

as claimed.

Hence we have that

HU» = l|wi(r)ll = \\MT)[\ = [Kit« = i,
and so both wi and W2 are minimal norm representatives, i.e. we do not have

uniqueness.

EXAMPLE (3.2). In this example we violate the hypothesis of (2.1) that w is

continuous on the essential spectrum of the compressed shift. Again we let m(z),

wi(z), W2(z) be as in Example (3.1).

Let T denote the compression of the shift to H2 0 m2H2. (T denotes the

compression of the shift to H2 0 mH2.) Now set

A := (mwi)(f).

Then
(mw2)(f) - (mwi)(f) = |m2(T)(i - f)2 = 0,

and so

A = (mwi)(f) = (mw2)(f).

Moreover

A2 = (m2w¡)(f) = m2(T)w2(f) = 0

which implies that pess(A) = 0, and so ||A|| > pess(A). Note that we have the

expression

A = wi(f)m(f).

Now set

X:=(m(f)(H2em2H2))-.

We claim that T\M is unitarily equivalent to T. Indeed it is easy to see that

V:=m(f)|ü20mü2

is unitary from H2 © mH2 —> X and TV — VT. Hence we get that

A\H2 © mH2 = wi(f)m(f)\H2 0 mH2 = Wl(f)V = Vwx(T).
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It then follows that

\\A\H2emH2\\ = \\wJ(T)\\ = \\wJ\\00 = l

for j — 1, 2. But ||A|| < ||mwi||oo = Hmu^Hoo = L and so ||A|| = 1.

In other words, we have shown that Hmu^Hco = ||(mt£;J)(T,)|| = 1 for j — 1,2.

This means of course that both mwi and mw2 are minimal norm representatives

for our given A, and once again we do not have uniqueness.

REMARK (3.3). This case in which m(z) = exp((z + l)/(z — 1)) is very important

in the control of delay systems. One can prove (see [6] for details) that for rational

w G H°° with the property that \w\ attains its absolute minimum at z = 1, the

minimal norm representative is unique. System-theoretically this means that the

i/°°-optimal compensator for a delay system relative to a low-pass filter is unique.

See [5-9] for a more complete discussion.
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