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ABSTRACT. The differential operator ring S = R[x; 6} can be embedded in

Ai(R), the first Weyl algebra over R, where R is a Q-algebra and S is a

locally nilpotent derivation on R. Furthermore Ai(R) is again a differential

operator ring over the image of S. We consider similar embeddings of the

smash product R#U(L), where L is a finite dimensional Lie algebra and U(L)

is its universal enveloping algebra. We show that the Weyl algebra over R has

the same Goldie dimension as R itself and use this to prove that R and R[x; 6]

have the same Goldie dimension where R is again a Q-algebra and 6 is locally

nilpotent.

Introduction. Let 6 be a derivation on the ring R. The corresponding differ-

ential operator ring S = R[x; 6] is an associative ring formed by taking polynomials

in x over R under the usual addition and with multiplication subject to the rule

xr — rx = <5(r) for all r € R. In Theorem 2 we show that if R is a Q-algebra and S

is locally nilpotent then S = R\x;6] can be embedding in

MR) = (XY{-YX- 1) = RinX;d/dY],

the first Weyl algebra over R. This result is well known. For example it follows

from an old result of Nouaze and Gabriel [4, Théorème 1.2] which gives conditions

for S = R[x; 6} itself to be isomorphic to a Weyl algebra. An explicit embedding,

similar to that used here, has been found by T. Masuda [3, Lemma 3.4].

This embedding is then used to show that if L is a finite dimensional nilpotent Lie

algebra over a field k, of characteristic zero, which acts on R as locally nilpotent

derivations, then the smash product R#U(L) embeds in An(R), where U(L) is

the universal enveloping algebra of L and n = dim*; L. The existence of such

an embedding follows from [1, Corollary 4.4]. We also consider finite dimensional

solvable Lie algebras acting as derivations and give a similar embedding with An(R)

replaced by a certain extension ring, An(R).

It was shown by R. Shock [5] that R and R[x] have the same right Goldie

dimension. Here we show that dimiï = dim^4i(Ä) and we use this to show that

dim R[x; 6} = dim R, where R is a Q-algebra and 6 is locally nilpotent.

Differential operator rings. Let 6 be a locally nilpotent derivation on the

Q-algebra R and let 5 = R[x; 6] be the corresponding differential operator ring.

Define r\: R -» R[Y] Ç A^R) by rj(r) = f = Ei(¿*(r)A'!)y<- Since 6 is locallY

nilpotent, this is a finite sum. Let R — rj(R).
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10 DECLAN QUINN

LEMMA l. r¡: R —> R[Y] Ç Ai(R) is a ring embedding with r/(l) — 1. Further-

more Y is transcendental over R and R\Y] = R\Y].

PROOF. Ifr, se R, then, r/(r+s) = r¡(r) + r¡(s) since 6n(r+s) = 6n(r)+ën(s) for

all n. The coefficient of Yk in ri(r)ri(s) is É,i=06i{r)6k-i(S)/il(k-i)\ = 6k(rs)/k\,

by Leibniz's rule. Thus r)(r)r)(s) — r¡(rs). Note that the constant term of f is r so

that n is injective and, since <5(1) = 0, 77(1) = 1.

Now suppose tq + f\Y + • ■ • + ftYl =0 and consider this as a polynomial in Y

with coefficients from R. The constant term is tq, so that ro = 0. If we know that

ro,... ,r¿_! are all zero, then the coefficient of Y% is r<, giving that r¿ is zero also.

Thus ro = • • • = rt = 0, so that Y is transcendental over R. Clearly, R[Y] Ç R[Y].

Conversely, Y € R[Y] and, if r € Ä, then r = f - ¿(T) Y + • ■ • + ((-1)"/n!)ó""(r)Yn,

where Sn+1(r) = 0, and hence r G Ä[Y]. Thus R[Y] Ç R[Y] so that equality

holds.    D

If A is any associative ring and a 6 A, then adQ(/3) = [a, ß] = aß — ßa for all

/? € A Note that if r e R, we have f,X eAi (R) and

adx(r) = [X,f] = C(í*(r)/iI)[X,y] = C^W/iIJiY'-1 = %)■
i ¿

We can now prove

THEOREM 2. Let 8 be a locally nilpotent derivation on the Q-algebra R. Then

S — R[x;6\ is isomorphic to R[X] via the map taking r to f and x to X. Further-

more Y G A\(R) is transcendental over R[X\, R[X] is invariant under ady, and

Ai(R) = R[X][Y] is a differential operator ring over R[X] with the locally nilpotent

derivation ady — —d/dX.

PROOF. Since R c R[Y], X is transcendental over R and, from above, [X, f] —

ê(r). Thus R[X] is isomorphic to R[x;6].

Now suppose Yli=ofiYl — 0 where /, e R[X] and f3 ^ 0 for some j. Let

/ = max, X-deg /, and assume / is minimal over all such equations. Applying

ady we have that 0 = [Y, £,fc=0 /,T*'] = - T!¡=oidhldX)Y%■ By the minimality

of I, dfi/dX = 0 for each i, so that /¿ £ R. But Y is transcendental over R by

Lemma 1 and hence Y is also transcendental over R[X].

Finally, since ady = —d/dX, it is clear that ady is a locally nilpotent derivation

when restricted to R[X). Also R[Y] C R[X][Y] and X € R[X] Ç R[X][Y\. Thus

R[X}[Y] = Al(R).    a
Now let Ai(R) = R[[Y]][X;d/dY], where R[[Y]\ is the ring of formal power

series in Y over R and d/dY denotes formal differentiation of power series with

respect to Y. Note that Ai(R) = R[Y][X;d/dY\ Ç Äi(R).

If we drop the assumption that 6 is locally nilpotent, S = R[x;6] may still be

embedded in A%(R) when R is a Q-algebra. Here we let r/: R —► fi[[K]] be given by

rj(r) = f = ^i(S*(r)/il)Y% where this sum is now allowed to be infinite. As before,

77 is a ring monomorphism with r¡(ln) = lfi.

It makes sense to take power series in Y with coefficients from R Ç ñ[[Y]], since

in the sum Yl'iLo ^¿ Yl, the coefficient of each power of Y receives only finitely many

contributions. We write the set of these elements fiifYll.
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LEMMA 3. In R[[Y]], ¡Ci^Y* = ^SjY' if and only if r¿ = s¿ for each i.
Furthermore R[[Y}} = R[[Y}}.

PROOF. Suppose 53j fiY1 = J2i SiY1 and consider both sides as power series in

Y with coefficients from R. Comparing constant terms gives that ro = sq. If we

have verified that r¿ = st for î = 0,1,... ,n — 1, then considering the coefficients of

Yn gives that rn = sn. Thus by induction, r¿ = s¿ for all i.

It is clear that Ä[[Y]] Ç Ä[[Y]] and since the constant term of f is r, it is easy

to see that any element of ß[[Y]] can be inductively constructed as a power series

in Y over R, so that the reverse inclusion holds.    D

The following result is the analogue of Theorem 2 for Ai(R).

THEOREM 4. Let 6 be a derivation on the Q-algebra R. Then S — R[x;S] is

isomorphic to R[X] Ç Äi(R) via the map taking r to f and x to X. Furthermore

Ri[Y))[X] = R[[Y]]lX).

PROOF. The isomorphism R[x; 6] ~ R[X] is proved as before and since i?[[Y]] =

R[[Y}}, it follows that Ä[[Y]][X] = Ä[[Y]][X].    G
We remark that fi[[Y]][X] ¿ R[X][[Y]] since the elements of fi[[Y]][X] have

finite AT-degree. It can be shown that i?[[Y]][A] Ç i?[A"][[Y]] and consists of the

elements of i?[X][[Y]] with finite X-degree.

If R is a Q-algebra, it is known that the ideals of Ai(R) are generated by their

intersection with R [2, Satz 4.10]. Thus the map taking I< R to A\(I) <Ai(R), is

a bijection between the ideals of R and those of Ai(R). If R is right Noetherian a

similar result holds for Ai(R). First we require a lemma.

LEMMA 5. Let R be a Q-algebra and let I Ç i?[[Y]] be a finitely generated right

ideal ofR[[Y]}.  Then I = (InR)R[[Y}} if and only if I is closed under d/dY.

PROOF. If / = (/ n ß)Ä[[Y]], it is clear that / is closed under d/dY.

Now suppose / is closed under d/dY and let Kt = {at\ £^i a¿Y* S /}. Since / is

closed under multiplication by Y, K% Ç A¿+i. Also / is closed under d/dY and R

is a Q-algebra, so that A"¿+i Ç if¿. Thus Kt = K0 for all t and K0 is a right ideal

of R. It follows that / Q K0[[Y]].

Let 4>i,...,4>n generate / as a right ideal of i2[[Y]]. Note that the constant

terms of <j>i,..., </>„ must generate Kq as a right ideal of R. A simple inductive

argument now shows that (¡>i,... ,qbn generate Äo[[Y]] as a right ideal of i2[[Y]].

Thus / = Ä"o[[Y]] and since we have shown that Kq is finitely generated as a right

ideal of R,

I = K0[[Y}} = K0R[[Y}} = (/ n R)R[[Y]].   a

We now give the ideal correspondence between R and Ai (R) when R is Noethe-

rian. If / is an ideal of R, let Ai (I) be the ideal of Ai (R) consisting of the elements

of Äi(R) whose coefficients lie in J. If T is any ring, let I(T) denote the set of

two-sided ideals of T.

LEMMA 6. Let R be a right Noetherian Q-algebra. Then<¡>: I(R) —► I(AX(R)),
where (/>(/) = Ai(I), is a bijection. This map preserves sums, products, and inter-

sections. Also primes are sent to primes and primitives to primitives.

PROOF. Suppose J<Ai(R). We need to show J = Â\(I) for some I<R. Let

« = T,?=of'Xi e -A where fi € B\[Y)\. Note that adya = -£"=i hiX1'1 € J,
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and so, by induction on the X-degree of a, we can conclude that fi G J for each

i > 0, and then, that /0 G J. Thus J = K[X], where K = Jr\R[[Y}\. K is finitely

generated as a right ideal of Ä[[Y]] since R, and hence i?[[Y]], is right Noetherian.

Also K is invariant under adx = d/dY so that by Lemma 5, K = I[[Y]] where

I = KDR. Thus J = K[X] =Äi(I).
If/, J<R, it is dear that IJ = <t>(I)<f>(J) DR. Thus <p(I)<f>( J) = ÄX{IJ) = 4>(U).

Similarly <j>(I + J) = <f>(I) + 4>(J) and0(/nJ) = <p(I) D<j>(j). Now since <j> preserves

products and inclusions, it is clear that 0 sends primes to primes. To show that

primitives go to primitive, let P<R be the annihilator of the simple right ñ-module

M and let M[[Y}] =_M ®R R[[Y]}. R[[Y]\ is a right Ä[[Y]]-module and this action

can be extended to Ai(R) by letting f-X = —df/dY for each / G i?[[Y]]. It is easily

checked that R[[Y]] is now an (Ä-Äi(ß))-bimodule so that M[[Y}\ = M ®R R[[Y]]

becomes a right Ai(i?)-module. Fix m to be a nonzero element of M. Since M is

simple any element of M[[Y]] can be written in the form m®/ for some / G i?[[Y]].

Let Y be a nonzero ñ[[Y]]-submodule of M[[Y]] and take / to be the right ideal

of R[[Y\] given by / = {/ G fi[[Y]]|m ® / € V}.   R[[Y]] is right Noetherian and

V is an j4i(.R)-submodule of A/[[y]], so that / is a finitely generated right ideal

of i?[[Y]]. Thus, by Lemma 5, / is generated as a right ideal of i?[[Y]] by its

intersection with R. Let J = I n R. Then V is generated as an J4i(Ä)-module by

{m S j\j G J} = {mj <& l\j £ J} = M g) 1, since M is a simple i?-module. Now

V = M[[Y]] so that M[[Y]] is a simple ^i(fi)-module. Since the annihilator of

Af[[Y]] is an ideal of Äi(R), it is of the form A\(I) for some I < R. Note that the

right annihilator of M = M ® 1 c M[[Y]] in R is P, so that I C P. Conversely,

since P is finitely generated as a right ideal of R, it is clear that P annihilates

M[[Y]] and then, that AX(P) is the annihilator of the simple module Af[[Y]].    D

The following example, due to Passman, shows that Lemma 5 fails if / is not as-

sumed to be finitely generated. This also shows that we cannot drop the Noetherian

hypothesis in Lemma 6.

EXAMPLE 7. Let A; be a field of characteristic zero and let

R = k + tk\x] C k[x,t\t2 = 0].

Also let / be the ideal of fi[[Y]], invariant under d/dY, generated by texY. Then /

is nonzero, d/dY(I) Ç /, but R n / = 0. Furthermore I[X] Ç R[[Y]][X] = Ai(R)

is a nonzero ideal of A\(R) but I[X] D R = 0.

PROOF. It is clear that R is a subring of k[x, t\t2 = 0] which does not contain

x. Note that d/dY(texY) = txexY, so that texY ,txexY ,tx2exY,... generate / as an

ideal of R[[Y]]. Now suppose r G RM. Then r = £"=0 txlexY fx, where f% G R[[Y}\.

Consider this as an equation in k[x,t\t2 = 0][[Y]]. Then re~xY = J2?=oxl(tfi)-

Since t2 = 0, tf, does not involve x, so that the right-hand side of this equation

has bounded x-degree. If r is nonzero, the left-hand side has unbounded degree in

x. Thus r = 0 and / (1 R = 0.

The last statement is clear.    D

An(R) is defined inductively to be

AMn-ÁR)) = Ä[[Yi]][A-i;d/dYi] • • • [[Yn]][Xn;d/dYn].

Now let L be a Lie algebra over the field k and let R be a fc-algebra. Then L

is said to act as derivations on R if there is a Lie algebra map a: L —> Der^ R,
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where Der^ R is the Lie algebra of fc-linear derivations on R. The smash product,

R#U(L), of R with U(L) the universal enveloping algebra of L, is the fc-space

R <8>k U(L). It becomes a fc-algebra under the multiplication coming from the

subalgebras R = R ® 1 and U(L) = 1 ® U(L) together with the additional rule that

if x G L and r £ R, then [x, r] = xr — rx = 6x(r), where 6X = a(x).

THEOREM 8. Let R be an algebra over a field k of characteristic zero and let L

be a finite dimensional solvable Lie algebra over k which acts on R as derivations.

Then the smash product R#U(L) can be embedded in An(R), where n = dim^ L.

PROOF. Since L is solvable, we can choose a basis Xi,...,xn for L,

where (xi,... ,xt) < (xi,... ,xi+1). Then R#U(L) = R\xx;ôi)[x2;62] ■ ■ ■ [xn;6n]

is an iterated differential operator ring, where <5¿+1 is a derivation on the ring

R[xi;6t]---[xï,âi].
Now proceed by induction on n, the case n = 1 being done in Theorem 4. Letting

Ri = R[xí;6i] ■ ■ ■ [x¿;<5¿], note that by the inductive hypothesis, Rn-\ embeds in

i»_i(fi). If Rn-i Q iín-i(A), then

Rn = fi„_i[i„;in] Ç ÀiiRn-i) C Äi(Än-i{R)) = Än(R).    D

In the case where L is nilpotent and acts on R as locally nilpotent derivations, the

successive derivations ¿,, which occur in the proof of the last theorem, are locally

nilpotent. Thus we have the following result. The existence of such an embedding

follows from [1, Corollary 4.4].

THEOREM 9. Let R be an algebra over a field k of characteristic zero and

let L be a finite dimensional nilpotent Lie algebra over k, which acts on R as

locally nilpotent derivations. Then the smash product R#U(L) can be embedded in

An(R),where n = âimk L.    G

EXAMPLE 10. Let L — kx.\ + kx2 be the solvable Lie algebra of dimension 2,

with [i2ia:i] = xi■ Assume L acts on the fc-algebra R, where the action of ii is

given by 6\ and the action of x2 is ¿v Then the embedding of R^U(L) in A2(R) is

given by r G R goes to £°^0 T,<j°=o(èiS2(r)/'i-J')YïY2 > x2 goes to X2, and xi goes

to XxeY2.

PROOF. Let Ai(R) have indeterminates Xi and Yi, while Ai(R[xi;Si\)

and Äi(Äi(R)) have indeterminates X2 and Y2. Also let t~i : i?[xi;éi][x2;<52] —♦

Äi(R[xi;6x]) and e2: /2[ii,¿i] —* A\(R) be the maps given in the proof of Theo-

rem 8. We need to consider the composite

R[x1;61)[x2;62] -Û* Ä1{R[x1;Sl])Ä^) Â1(Â1(R)),

where Äi(e\) acts like E\ on R\x\;b\\ and sends X2 and Y2 to themselves. Thus if

r£R,
OO CX)       OO

r - £,{4(r)/ß)YJ -tlT,^6Í(r)/iW)YÍYl
j=0 i=0j=0

Also
oo oo

«i - JZtàixiWW = Y^tHJ\)YÍ = x^ - XieY*

and X2 —» X2 —* X2.    D
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We write dim R for the right Goldie dimension of the ring R. It was shown by R.

Shock [5] that dim R[x] = dim R. We extend this in Theorem 15 to show that if R

is a Q-algebra and 6 a locally nilpotent derivation on R, then dimiî[x, <5] = dimfl!.

This was also shown to be true when R is a semiprime Goldie ring by G. Sigurdsson

[6].
If / is a right ideal of R, we write I[x;6] for IR[x;6] which is a right ideal of

R\x;6]. We use the symbol f to denote right annihilators. Thus rR(t) is the right

annihilator of t in R. It is convenient to isolate the argument in the following

lemma.

LEMMA 11. Let S = i2[x;<5] be a differential operator ring and let I Ç R[x;6]

be a nonzero right ideal.

(i) If h — cq-\-c\x+- ■ +cnxn, with cn t¿ 0, is a nonzero element of I of minimal

degree n, then fs(h) = fR(cn)[x;6].

(ii) If f = oo + ■■■ + anxn and g — bo + ■ ■ ■ + bmxm are nonzero elements of

I with an,bm ^ 0 and n + m minimal subject to fR[x;6] D gR[x;6] — 0, then

fs{f) = fñ(an)[x;<5].

PROOF, (i) Note that if r G R, then x'r = rx* + Z, where / involves only lower

points of x. Thus hr = cnrxn+(lower degree terms). Now if r G rR(cn), then hr £ I

and hr has degree less than that of h. Hence hr = 0, and fR(cn)\x;6] Ç is(h).

Conversely, let k = bo+bix-\-h6tx' g fs(h). Note that hk — cnbtxn+t+(lower

degree terms). Since hk = 0, we find that bt £ fR(cn). Hence hbtxl = 0, giving

that 6o + • • • + bt-ix*-1 € rs(o). Repeating this argument gives that bt £ f«(cn)

for each i. Thus k £ fR(cn)[x;6] and fs(h) C rfi(cn)[x;<5].

(ii) fR\x; 6] is a right ideal of R[x; 6] and since n + m is minimal subject to

fR\x; 6}r\gR[x; 6] = 0, it follows that / is an element of fR[x; 6] of minimal degree.

Now part (i) applies to give the result.    D

The following lemma forms part of the proof of Shock's theorem and is included

for the sake of completeness.

LEMMA 12. Let U Ç R be a uniform right ideal. Then U[x] Ç R[x] is again a

uniform right ideal.

PROOF. If u[x] is not a uniform right ideal, choose f,g £ Í7[x]\0, such that

deg/ -I- deg g is minimal subject to fR[x] n gR[x] = 0. Let f = oq + • • • + anxn,

with an t¿ 0, and let g = bo + • • • + bmxm, with bm / 0. We can assume m < n

and, since U if uniform, we may further assume an = bm. Then by Lemma ll(ii),

rR[x](f) = fR(a)[x] = rR[x](g).

Now consider h = f - gxn~m £ U[x\. If h = 0 then / = 0xn_m G fR[x] D gR[x]

gives a contradiction. Thus h / 0. Note that deg h < deg /, so by the minimality of

sum of the degrees, hR[x]r\gR[x] ^ 0. Now choose a, ß £ R[x] so that ha = gß ^ 0.

Thus (/ - gxn~m)a = gß or fa = g(x"~ma + 0). If fa = 0 then ga = 0 so that

ha — 0. Since ha ^ 0 we conclude that 0 / fa = g(xn~ma + ß), which is a

contradiction.    D

The next result is well known.

LEMMA 13.  dimR[x; 6] > dimR for any differential operator ring R[x;6].

PROOF. If I\ ,...,/„ is an independent set of right ideals of R, then Ii[x;6],...,

In[x; 6] forms an independent set of right ideals of R[x; 6].    D
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THEOREM 14.   dim Ai (R) = dim R for any ring R.

PROOF. From Lemma 13, we may assume dimÄ is finite. Let dimi? = n and

let E = U\ + ■ ■ ■ + Un be a direct sum of n uniform right ideals of R, which is

essential as a right ideal. We claim that EAi(R) = U\A\(R) + ■ ■ • + UnAi(R) is

a direct sum of n uniform right ideals of Ai(R) which is essential as a right ideal.

Indeed EAi(R) is essential as an Ä-submodule of Ai(R) and hence also as a right

ideal. It remains to show that if U Ç R is a uniform right ideal of R, then UA\(R)

is a uniform right ideal of A\(R). This is achieved by a variation on the argument

in Lemma 12.

Suppose UA\(R) is not uniform. Then let / = 5Z"=o fix%,g = X^=o 9jX3, with

fa,Çj £ U[Y], be nonzero elements of UA\(R) such that fAi(R)C\gAi(R) = 0. Fix
n and k so that n + k is minimal and assume n> k. Note that if h(Y) £ R[Y] then

Xnh(Y) = /i(Y)X"+(lower powers of X). Also U[Y] is a uniform ideal of R[Y]

by Lemma 12. Thus we may further assume /„ = gk. Lastly we may also assume

that the Y-degree of /„ is minimal in fnR[Y]. Now let a £ R be the leading

coefficient of /„ G R[Y]. Then rAlrR)(f) = fR^Y](fn)Ai(R) by Lemma ll(ii).

But fÄ(y](/„) = fR(a)R[Y] by Lemma ll(i), so that fAl{R)(f) = rR(a)A1(R).

Similarly, fAl^(g) = fR(a)Ai(R). Since R commutes with X it follows that

rR(a)Ai(R) annihilates gXn~k.

Let h = f — gXn~k. We may assume h ^ 0 since otherwise / = gXn~k. Now

since X-deg h < X-deg / and n + k is minimal, we see that hA\ (R) n gAi (R) ^ 0.

Choose a,ß£Ax(R) so that 0 ¿ ha = gß. This implies that fa = g(Xn~ka + ß).

If fa = 0 then ha = 0, since rAi{R)(gXn-k) D rAl{R)(g) = fA¡{R)(f). Thus

0^/a = g(Xn~ka + ß) which contradicts the assumption that

fA1(R)ngA1(R) = 0.       D

Finally, we combine our methods to prove

THEOREM 15. Let R be a Q-algebra and let 6 be a locally nilpotent derivation

on R.  Then dim R[x; 6] = dim R.

PROOF. We use the notation of Theorem 2 and combine that result with Lemma

13 to conclude that dimR < dimR[X] < dimR[X][Y]. But R a R,R[X] ~ R[x;6],

and Ä[-X][Y] = Ai(R). Thus by Theorem 14, equality holds above.      D
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NOTE ADDED IN PROOF. Two papers are to appear on related subjects, Uni-

form rank over differential operator rings and Poincaré-Birkhoff-Witt extensions,

Pacific J. Math., by A. Bell and and K. Goodearl, and Goldie dimension of differ-

ential operator rings, Comm. Algebra, by P. Grzeszczuk. Both these papers include

additional situations in which dim R = dim R[x; 6]. The first contains another proof

of Theorem 14, with the result stated for any induced module, and gives an example

which shows that Theorem 15 fails if 6 is not assumed locally nilpotent.
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