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ABSTRACT. Given an immersion /: M —► Rn of a compact Riemannian man-

ifold M we prove a simple criterion involving the tension field of / to determine

whether or not / is an isometry.

1. Introduction. Let /: M —» R" be an immersion of a Riemannian manifold

into Euclidean space. A natural problem is to determine whether or not / is an

isometry. In this note we give a proof of the following simple result (see §2 for

details).

THEOREM. Let M be an m-dimensional, compact, oriented, Riemannian man-

ifold with metric ds2 and let f: M —> R™ be an immersion. Set da2 for the induced

metric on M via f, u for the ratio of the volume elements, t for the tension field

of f and H for the mean curvature vector of f: (M,dtr2) —> Rn. Then f is an

isometry iff
(i) (/, t — umH) > 0 and

(j) / is volume decreasing for m > 3,

(jj) / is volume preserving for m = 2,

(jjj) / îS volume increasing for m = 1.

REMARKS. 1. The necessity of the above conditions is clear. Indeed if / is an

isometry then Usl, that is / is volume preserving, and r = mH (see §2).

2. For m = 2 in the proof of the theorem it will become apparent that (i) alone

implies that / is conformai. We wish to state this in the form of the following:

PROPOSITION. Let f:M—> Rn be an immersed compact Riemannian surface.

Then f is conformai iff t = 2uH.

PROOF. Sufficiency follows from above. Necessity follows from a well-known

computation of the tension field (for instance see Hoffman-Osserman [1]).

3. A step in the proof of the theorem is based on the following result from linear

algebra. Let V be a real m-dimensional vector space, G an inner product in V

and H a symmetric semi-positive-definite bilinear form. Let (jfy), (/i¿j) be their

matrices with respect to a basis of V. Set g = det(^) and h = det(fty); clearly

g > 0 and h > 0. For A a parameter consider the determinant

detigij + Xhij) - g + mPX + ■■■ + hXm,
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where P is a polynomial in the entries of the matrices of G and H. It is easily

verified that the quantity P/g is independent of the basis chosen in V; we claim

that

(l) P/9 > (h/g)1/m

where the equality sign holds iff hl3 = pgij for a certain p. Indeed we choose a basis

of V such that gij = ¿\j and ihij) is diagonal so that (hij) = diag(Ai,..., Xm).

Then (1) becomes

, / m        \ V"»

m ¿S>a(n*Ji=i \¿=i   /
and the result is known as a standard inequality.

2. Preliminaries on differential geometry. We realize the Euclidean space

Rn as the homogeneous space £(n)/SO(n), where Ein) — SO(n) x Rn is the group

of rigid motions and SO(n) its isotropy subgroup at the origin 0 of Rn. From now

on we fix the indices convention 1 < A, B,... < n, 1 < i,j,... < m, m + 1 < a,

/?,...< n. If Qß, QA denote the components of the Maurer-Cartan form of Ein)

and s is a local section of the bundle Ein) —► Rn the forms

(3) eA = s*eA

give a local orthonormal coframe in R™ whose corresponding Levi-Civita connection

forms are

(4) ei = s-eA.

From now on we will drop the pull-back notation because it will be clear from the

context where the forms must be considered. Let / : M —► R" be an immersion of

an m-dimensional manifold. A Darboux frame along / is a (locally defined) smooth

function e on M with values in Ein) of the form

e:p-> ieAip),fip))

where eAip) are the columns of an SO(n) matrix such that the vectors e¿(p) span

the image of the tangent space of M at p under the differential of / and determine

the correct orientation. It follows that on M

(5) deA-e^®eB,

(6) 9a = 0.

In particular (6) implies that the metric der2 induced by / on M can be written as

(7) dc-2 = J2(6')2-
i

Suppose now M is an oriented Riemannian manifold with metric ds2. Let <pl be

an oriented orthonormal (local) coframe on it with corresponding connection forms

(pi. On the common domain of definition of the 0A and 0"s we have

(8) eA = BftjP
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for some smooth function Bf. According to (6)

(9) Bf = 0.

In particular the volume element dV of the metric da2 can be expressed as

(10) dV = detiB^dV

where dV is the volume element of the metric ds2 ; equivalently their ratio is given

by the positive function

(11) u = detiBlj).

The immersion / will be said to be volume decreasing if at every point p e M

(12) tt < 1.

Volume increasing and volume preserving are defined analogously. Exterior dif-

ferentiation of (6) and (8) and use of the structure equations of Rn and iM,ds2)

gives:

(13) dBA - BA<fr> + BfdA = BA^

for some smooth functions B& such that BA- — BA,. The B^'s are the coefficients of

the (generalized) second fundamental tensor of the immersion /: (M, ds2) —► R",

i.e.

(14) Vdf = Bfitf ® 4P <g> eA

whose trace with respect to fis2 gives the tension field r of /, i.e.

(15) T = B$eA.

We remark that if instead of considering / : (M, ds2) —» Rn we consider / : (M, da2)

—► Rn the above procedure gives the second fundamental tensor and m times the

mean curvature vector H.

We denote by Ads2, Ado-2 the Laplace-Beltrami operators relative to ds2 and

da2. We now claim

(16) ^ds*\f\2 = {f,T) + \\df\\2

and similarly

(17) iAd(T2|/|2=m{(/,//) + l}.

In the above formulas (, ) is the usual inner product in Rn and | | its corresponding

norm, while || || is the Hilbert-Schmidt norm of df; that is

(is) P/II2 = £(AA)2-
i,A

The proof of (16) is a standard computation. Indeed by (6) and (8) we have

d\f\2 = 2BAif,eA)tp

and by (5), (6), (8), (13)

(19) di2BA(f,eA)) - 2BA(f,eA)tp¡ = 2{(f,eA)B$ -Y BABA}t¡y>.
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By definition Ads2|/|2 is the trace of the coefficients appearing in the right-hand

side of (19), hence by (15) and (18) we obtain (16).

In case M is compact, integration of (16) gives

(20) Eif) = -\ f (f,r)dV
¿ J M

where Eif) is the energy of /. If / is an isometry (20) generalizes a formula of

Minkowski on convex bodies.

3.   Proof of the theorem.  We just prove sufficiency.   Since M is compact,

integrating (16), (17) and using (10), (11) we obtain

(21) f {(/, t - umH) + \\df\\2 - urn} dV = 0.
J M

We now let ds2 and da2 play the role of G and H in the introduction. Our con-

siderations will be pointwise. The matrix of ds2 with respect to the basis <pl is of

course the identity (<%), while from (7) and (8) we get

da2 = BÎBfy'tp3

showing that the matrix of da2 with respect to the same basis is (jB*1#). In

particular from (11) its determinant is u2. A simple computation shows that in

this case P = ^\\df\\2. From (1) we therefore obtain

(22) ||d/||2 > mu2'm,

and hence

(23) ||d/||2 - urn > m(i¿2/m - u).

On the other hand by (i) and (21) we get /(||d/||2 - urn) < 0. Thus, if

(24) u2/m - u > 0,

combining with (23) gives

(25) u = u2/m.

We deduce that equality holds in (22), hence

(26) B*B* = p6lf,

that is, the map / is conformai. Now in case m > 3 (24) follows from (j); moreover

from (25) we deduce u = 1 which implies p — 1 in (26), i.e. / is an isometry. The

remaining two cases are handled similarly.
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