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ABSTRACT. Given an immersion f: M — R" of a compact Riemannian man-
ifold M we prove a simple criterion involving the tension field of f to determine
whether or not f is an isometry.

1. Introduction. Let f: M — R" be an immersion of a Riemannian manifold
into Euclidean space. A natural problem is to determine whether or not f is an
isometry. In this note we give a proof of the following simple result (see §2 for
details).

THEOREM. Let M be an m-dimensional, compact, oriented, Riemannian man-
ifold with metric ds® and let f: M — R™ be an immersion. Set do? for the induced
metric on M via f, u for the ratio of the volume elements, T for the tension field
of f and H for the mean curvature vector of f: (M,do?) — R™. Then f is an
isometry iff

(i) {(f,7 —umH) >0 and

() f s volume decreasing for m > 3,

(33) f s volume preserving for m = 2,

(333) f 1s volume increasing for m = 1.

REMARKS. 1. The necessity of the above conditions is clear. Indeed if f is an
isometry then u = 1, that is f is volume preserving, and 7 = mH (see §2).

2. For m = 2 in the proof of the theorem it will become apparent that (i) alone
implies that f is conformal. We wish to state this in the form of the following:

PROPOSITION. Let f: M — R™ be an immersed compact Riemannian surface.
Then f is conformal iff T = 2uH.

PROOF. Sufficiency follows from above. Necessity follows from a well-known
computation of the tension field (for instance see Hoffman-Osserman [1]).

3. A step in the proof of the theorem is based on the following result from linear
algebra. Let V be a real m-dimensional vector space, G an inner product in V
and H a symmetric semi-positive-definite bilinear form. Let (gi;), (hi;) be their
matrices with respect to a basis of V. Set g = det(gi;) and h = det(hy;); clearly
g > 0and h > 0. For A a parameter consider the determinant

det(gij + /\h,‘j) =g+ mPA+---+h2™,
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where P is a polynomial in the entries of the matrices of G and H. It is easily
verified that the quantity P/g is independent of the basis chosen in V; we claim
that

(1) P/g > (h/g)"/™
where the equality sign holds iff h;; = pg;; for a certain p. Indeed we choose a basis

of V such that g;; = 6;; and (h;;) is diagonal so that (h;;) = diag(A1,...,Am).
Then (1) becomes

m 1/m
1
(2) o Z Ai > (H /\i)
=1 =1
and the result is known as a standard inequality.

2. Preliminaries on differential geometry. We realize the Euclidean space
R" as the homogeneous space E(n)/SO(n), where E(n) = SO(n) x R™ is the group
of rigid motions and SO(n) its isotropy subgroup at the origin 0 of R™. From now
on we fix the indices convention 1 < A,B,...<n,1<147,...<m, m+1<a,
B,...<n. If 9‘3,6" denote the components of the Maurer-Cartan form of E(n)
and s is a local section of the bundle E(n) — R™ the forms

(3) 64 = s*e4

give a local orthonormal coframe in R™ whose corresponding Levi-Civita connection
forms are

(4) 64 = 5",

From now on we will drop the pull-back notation because it will be clear from the
context where the forms must be considered. Let f: M — R™ be an immersion of
an m-dimensional manifold. A Darboux frame along f is a (locally defined) smooth
function e on M with values in E(n) of the form

e:p— (ea(p), f(p))

where e4(p) are the columns of an SO(n) matrix such that the vectors e;(p) span
the image of the tangent space of M at p under the differential of f and determine
the correct orientation. It follows that on M

(5) desa =03 ®ep,

(6) 6* = 0.

In particular (6) implies that the metric do? induced by f on M can be written as
(7 do? = ().

i
Suppose now M is an oriented Riemannian manifold with metric ds®. Let ¢* be

an oriented orthonormal (local) coframe on it with corresponding connection forms
¢;~. On the common domain of definition of the §4 and ¢*’s we have

(8) et = BAy
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for some smooth function B;‘. According to (6)

(9) B} =0.

In particular the volume element dV of the metric do? can be expressed as
(10) dV = det(B%)dV

where dV is the volume element of the metric ds?; equivalently their ratio is given
by the positive function

(11) u= det(B;).
The immersion f will be said to be volume decreasing if at every point p € M
(12) u<l

Volume increasing and volume preserving are defined analogously. Exterior dif-
ferentiation of (6) and (8) and use of the structure equations of R and (M, ds?)
gives:

(13) dBf - B¢} + BP94 = B{\¢’
for some smooth functions B;‘_;,- such that B;‘} = Bﬁ. The B;‘} ’s are the coefficients of

the (generalized) second fundamental tensor of the immersion f: (M,ds?) — R",
ie.

(14) Vdf = B{?(ﬁi ® ¢'7 Rep
whose trace with respect to ds? gives the tension field 7 of f, i.e.
(15) 7 = Bflea.

We remark that if instead of considering f: (M,ds?) — R™ we consider f: (M, do?)
— R™ the above procedure gives the second fundamental tensor and m times the
mean curvature vector H.

We denote by Agy2, Agy2 the Laplace-Beltrami operators relative to ds? and
do?. We now claim

(16) 3842 |f1? = (f,7) + |dfII
and similarly
(17) $8402|f? = m{(f, H) +1}.

In the above formulas (, ) is the usual inner product in R™ and | | its corresponding
norm, while || || is the Hilbert-Schmidt norm of df; that is

(18) laf1l® = D _(BH)*.

iA
The proof of (16) is a standard computation. Indeed by (6) and (8) we have
d|f? = 2B{(f,ea)¢’
and by (5), (6), (8), (13)
(19)  d(2Bf(f,ea)) — 2B (f,ea)d] = 2{(f,ea) Bf; + B{B}'}¢’.
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By definition Ag,z|f|? is the trace of the coefficients appearing in the right-hand
side of (19), hence by (15) and (18) we obtain (16).
In case M is compact, integration of (16) gives

1
(20) Bf)=—; [ v
M

where E(f) is the energy of f. If f is an isometry (20) generalizes a formula of
Minkowski on convex bodies.

3. Proof of the theorem. We just prove sufficiency. Since M is compact,
integrating (16), (17) and using (10), (11) we obtain
(21) / ({fo7 — umH) + df||? — um} dV’ = 0.

M

We now let ds? and do? play the role of G and H in the introduction. Our con-
siderations will be pointwise. The matrix of ds? with respect to the basis ¢* is of
course the identity (6;;), while from (7) and (8) we get

do® = BEBk¢i¢
showing that the matrix of do? with respect to the same basis is (BfB¥). In

particular from (11) its determinant is u?. A simple computation shows that in
this case P = L ||df||?. From (1) we therefore obtain

(22) lldf|I? > mu®™,

and hence

(23) dflI* = um > m(u™ — u).

On the other hand by (i) and (21) we get [(||df||> — um) < 0. Thus, if
(24) uw™ —u >0,

combining with (23) gives

(25) u=u?™,

We deduce that equality holds in (22), hence

(26) BB} = péi;;

that is, the map f is conformal. Now in case m > 3 (24) follows from (j); moreover
from (25) we deduce u = 1 which implies p = 1 in (26), i.e. f is an isometry. The
remaining two cases are handled similarly.
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