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ABSTRACT. If / is a proper 4-planar geodesic Kaehler immersion of a con-

nected complete Kaehler manifold Mn (n > 2) into CPm{c), then Mn =

CPn(c/4) and / is equivalent to the 4th Veronese map.

0. Introduction. Let M be a Riemannian manifold. A curve t: I —> M defined

on an open interval / is said to be d-planar if there exist an open interval Is (s €

Is C I) and a (i-dimensional totally geodesic submanifold Ps for each s G I such

that t(Is) c P3. Moreover, a d-planar curve r is said to be proper if it is not

(d— l)-planar on each open subinterval of I. An isometric immersion /: M —+ M of

a Riemannian manifold M is called a (resp. proper) d-planar geodesic immersion if

T — I ° 7 is (resp. proper) d-planar geodesic for every geodesic 7:1 —* M. 1-planar

geodesic immersions are totally geodesic. 2-planar geodesic immersions into real

space forms were classified in [7] (for other treatment, see [1]).

When the ambient manifold is a complex projective space CPm(c) with constant

holomorphic sectional curvature c, 2-planar and odd order proper planar geodesic

Kaehler immersions were classified in [5 and 6], respectively. In this paper, we shall

study proper 4-planar geodesic Kaehler immersions into CPm(c).

1. Notation and basic equations (cf. [2]). For a Kaehler immersion /: M —►

CPm(c), the second fundamental form and Weingarten map corresponding to a

normal vector field £ will be denoted by H and Aç, respectively. Gauss and Wein-

garten's equations are given by

(1.1) VXY = VXY + H(X,Y),        VxÇ = -AçX + VxÇ

for all tangent vector fields X and Y on M, where V, V, and V-1 denote the

covariant differentiation of M, M, and the normal bundle, respectively. Let R be

the curvature tensor and J the complex structure of M. The structure equation of

Gauss is given by

(1.2)
R(X,Y)Z

= (c/4){(Y, Z)X - (X, Z)Y + (JY, Z)JX - (JX, Z)JY - 2(JX, Y)JZ}

+ AH(y,z)X - Ah(x,z)Y-
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The structure equation of Codazzi reduces to (DH){X,Y,Z) = (DH){Y,X,Z),

where

(DH)(X, Y, Z) = VXH(Y, Z) - H(VXY, Z) - H(Y, VXZ).

Let J be the complex structure of CPm(c). Since VJ = 0, we have

(1.3) H{JX,Y) = JH(X,Y).

If H satisfies ||P/(A:,X)||2 = \2(x) for all unit vectors X G TXM and each

x G M, then the immersion / is said to be isotropic (or A-isotropic). We note that

/ is isotropic if and only if (H(X, X),H(X, Y)) = 0 for any orthonormal vectors X

and Y at every point.

2. Proper 4-planar geodesic Kaehler immersions. Let M be a connected

complete Riemannian manifold and f: M —> CPm(c) a proper d-planar geodesic

immersion. We first prove

LEMMA 2.1. For each geodesic 7 of M, there exists a unique d-dimensional

totally geodesic submanifold P-, such that r((—00, 00)) C P-,, where r = /07. Each

P1 is complex or totally real.

PROOF. Let u G (-00,00) be arbitrarily fixed and put P1 = Pu. If we define a

set U by U = {s G (—00,00): t(s) G P7}, then U is nonempty and closed. Let v G U.

Consider a finite cover {ISl — Iu, IS2,..., ISk = Iv} of [u, v] where we have assumed

u < v without loss of generality. Noting that / is proper d-planar geodesic and the

intersection of two totally geodesic submanifolds is a totally geodesic submanifold,

we see that P, = Pu = Ps¡ = • • • = Pv. Therefore, Iv C U, i.e., U is open and hence

U = (-00,00). The uniqueness of P7 is easily derived from the assumption that / is

proper d-planar geodesic. It is well known that a submanifold in CPm(c) is complex

or totally real if and only if the second fundamental form H of the submanifold

satisfies (DH){X,Y,Z) = (DH){Y,X,Z) (cf. [6, (1.9), p. 300]). Therefore, since

P1 is totally geodesic, we have the assertion.    Q.E.D.

Let x S M, X e UXM (unit tangent sphere at x), and let 7 be the unit speed

geodesic such that 7(0) = x and 7(0) = X. Then r = / o 7 satisfies

r(0) = f.X,

(2.1) Vxr = H(X,X),

Vxi = -Ainx,x)X + (DH)(X,X,X).

Higher order covariant derivatives of f in the direction X can be also obtained by

using Gauss and Weingarten equations (1.1). Note that all covariant derivatives of

i are tangent to P,. Define a function (f> on the unit tangent sphere bundle UM

over M by

4>{X) = det^V^r, V^r)iii=0,i.d-i)

= Gramian of vectors X, Vxf,..., Vx   f

for X G UM. If <t>{X) ¿ 0, then vectors X, Vxf,..., V^r form a base of TXP^.



KAEHLER IMMERSIONS INTO PROJECTIVE SPACE 997

LEMMA 2.2. Let S be any connected component of the set {X G UM: <p(X) ̂

0}. Then P^x is complex for every X G S or totally real for every X G S where

7X denotes the geodesic tangent to X.

PROOF. Assume that there exist X and Y in 5 such that P1x is complex and

P^y is totally real. Since S is arcwise connected, there is a smooth curve X(t) in

S such that X(0) = X and X(l) — Y. Consider a function %p on [0,1] defined by

ip{t) = Sup{(JX(i), Z):ZG Tn[x{t))PlXW,\\Z\\ = 1},

where w: UM —► M is the projection. Since

7V(x(t))Py««) =Span{X(t),Vx(t)it,...,Vdx{1t)ft}        (r(=/o7xW)

which is a smooth curve in the Grassmann bundle of d-planes over M, we see that

tp is a continuous function. Moreover, P1x(t) is complex or totally real (Lemma 2.1)

and hence \¡j(t) = 1 or 0 for each t G [0,1]. Thus ip is constant. However ip(0) = 1

and V(l) = 0.    Q.E.D.
Now we explain Kaehler immersions into CPm(c) of symmetric Kaehler man-

ifolds of compact type. Let M be an irreducible symmetric Kaehler manifold of

compact type and k a positive integer. In [4], Nakagawa and Takagi constructed

a full equivariant Kaehler imbedding fk-M —> CPm(c) which is called the fcth

full Kaehler imbedding of M. Moreover, in [8] Takagi and Takeuchi constructed

a full Kaehler imbedding of a (not necessarily irreducible) symmetric Kaehler

manifold M of compact type into CPm(c) as follows. Let M¿ (i — l,...,q)

be the irreducible components of M, i.e., M = Mi x • • • x Mq and /fc<:M¿ —*

CPm,(c) be the fc¿th full Kaehler imbedding of M%. Define a full Kaehler imbed-
ding Sq:CPmi(c) x ••• x CPm"{c) -» C7Pm(c) by the multifold tensor product of

the homogeneous coordinates where m = (mi + 1) x •■ ■ x (mq + 1) — 1 and we

notice that 52 is the Segre imbedding. Then Sq o (fkl x • • • x fXq) becomes a full

equivariant Kaehler imbedding of M into CPm(c). In [4 and 9], it was shown that

any full Kaehler immersion of a compact symmetric Kaehler manifold into CPm(c)

is obtained in this way. In particular, if M — CPn(c/k), then the fcth full Kaehler

imbedding Vkn:CPn(c/k) —> CPm^(c) is called the kth Veronese map which is

defined by

[Zi]o<i<n
_J¡1__\ „ko ..       kn
kQ\--kn\) Z° Z"

fcuH-\-kn = k

where [*] means the point of the projective space with the homogeneous coordinate

* and m(jfc) = {n+kk) - 1.

The following two lemmas were proved in [6].

Lemma 2.3 (cf. the proof of Proposition 2.1 in [6]). Let f-.M -►
CPm(c) be a Kaehler immersion of a connected complete Kaehler manifold M into

CPm(c). Assume that (H{X,X),{DH)(X,X,X)) = 0 for every X G TM. Then

M is a compact simply connected symmetric Kaehler manifold.

Lemma  2.4  (cf. the proof of Theorem 2.3 in  [6]). Let f-.M -+
CPm(c) be a proper d-planar geodesic Kaehler immersion of a symmetric Kaehler
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manifold of compact type. Then Mn = CPn(c/d) and f is equivalent to i o V¿,

where i:CPm^d\c) —► CPm(c) is a totally geodesic imbedding.

Here we note that the equivalence of two isometric immersions / and /' of a

Riemannian manifold into a Riemannian manifold M is defined as follows: If there

exists an isometry F oî M such that /' = F o /, then / and /' are said to be

equivalent.

LEMMA  2.5.   Let f:Mn —> CPm{c) be a Kaehler immersion of a connected

complete Kaehler manifold Mn.  Assume that n > 2 and f is isotropic on a con-

nected open subset Mq in Mn.  Then Mn = CPn(c/k) and f is equivalent to ioVk

for some k.

PROOF. Using (1.2), we see that the holomorphic sectional curvature of Mo

is equal to c — 2A2 where A2 = \\H(X,X)\\2. It follows from the holomorphic

analogue of Schur's Theorem [2, Theorem 7.5, p. 168] that M0 (n > 2) is a Kaehler

manifold of constant holomorphic sectional curvature. Thus Mn is also of constant

holomorphic sectional curvature since M™ is analytic. Hence we can conclude from

[3] that M" = CPn(c/k) and / is equivalent to i o Vk for some positive integer

k.    Q.E.D.

THEOREM 2.6. Let f:Mn -* CPm(c) be a proper 4-planar geodesic Kaehler

immersion and n > 2. Then Mn = CPn(c/4) and f is equivalent to i o V4", where

i:CPm^(c) —» CPm(c) is a totally geodesic imbedding.

REMARK. If m(4) > m, then such immersion does not exist.

PROOF. Assume that the set S in Lemma 2.2 is not empty. By Lemma 2.2,

there are two cases: (I) Pnx is totally real for every X G S, and (II) P1x is complex

for every X G S.

Case (I). Equation (2.1) implies that

(2.2) (JH{X,X),{DH){X,X,X)) = 0

for every X G S. Since the left-hand side of (2.2) is real analytic on UM and S

is open, we see that (2.2) holds for every X G UM. Using (1.3) and the Codazzi

equation, we have

(2.3) {DH){JZ,Y,X) = J{DH)(Z,Y,X)

for every X,Y,Z G TM. Replacing X by JX in (2.2) and using (1.3) and (2.3), we

have (H(X,X),(DH){X,X,X)) = 0 for every X G TM. Therefore, we conclude

from Lemmas 2.3 and 2.4 that M = CP"(c/4) and / is equivalent to i o VJ1.

Case (II). Since <p{X) ¿ 0 on S, H(X,X) ¿ 0 for every X G S. Thus vectors

X, JX,H(X,X), and JH{X,X) span TAX)P^x. It follows from (2.1) that

(2.4) (H{X, X), H(X, Y)) = (AH(X,X)X, Y) = 0

for any Y G Tn(X)M orthogonal to Span{X, JX} (X G S). Furthermore, we have

(H(X,X),H(X,JX)) = {H{X,X),JH{X,X)) =0.

Therefore, (2.4) holds for every Y G Tn(X)M orthogonal to X G S. In other words,

the function X2:X i-> \\H(X, X)\\2 defined on UM has the vanishing derivative in

the direction of the fibre on í/^jAínS (X G S). Since í/^MnS is open and A2
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is real analytic, A2 is constant on U„^X)M for X G S. Thus / is A-isotropic on the

connected open subset M0 = n(S). We see from Lemma 2.5 that M" = CPn(c/k)

and / is equivalent to i o Vkn for some positive integer k.  The fcth Veronese map

Vk:CPn(c/k) —► CPm(-k^(c) is proper fc-planar geodesic.   However, P1 is totally

real for every geodesic 7 in CPn{c/k) (cf.  [6, Lemma 2.2 and its proof, p. 303]).

Hence this case does not occur.

Next let us assume that <p = 0 on UM.   Suppose that there exists a geodesic

7 such that P7 is totally real. Then the order of / o 7 is not greater than 3, and

hence an open segment (/ o 7) (7) is contained in a 3-dimensional totally geodesic

submanifold of P1 = RP3(c/4) (for the definition of the order of a curve, see [6]).

This contradicts the assumption that / is proper 4-planar geodesic.   Thus P1 is

a complex totally geodesic submanifold for every 7.   If / is not totally geodesic,

then the function A2 does not vanish identically on UM.  Thus if we define S by

a connected component of the set {X G UM, X(X) ^ 0} and Mq = n(S), then,

using the same argument as Case (II), we have a contradiction.    Q.E.D.

REMARK.  We have used the condition that / is 4-planar geodesic in order to
_2

prove (Vxf,Y) = 0 for every Y orthogonal to Sp{X,JX}. There is a conjecture

that if f:M —► CPm(c) is a proper d-planar geodesic Kaehler immersion, where d

is even, then M = CPn(c/d) and / is equivalent to Vdn.

It seems to be interesting that we characterize Kaehler immersions of compact

symmetric Kaehler manifolds by the shape of geodesies.

The following is an easy consequence of Lemma 2.3.

PROPOSITION 2.7. Let f-.M -» CPm{c) be a Kaehler immersion of a con-

nected complete Kaehler manifold M. The first Frenet curvature of r = / o 7 is

constant along r for every geodesic 7 of M if and only if M is a compact sim-

ply connected symmetric Kaehler manifold and f is equivalent to a full equivariant

Kaehler imbedding mentioned before in this section.
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