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ABSTRACT. We use results on the cohomology of principal congruence sub-

groups of PSL2(Z[w]), w2 + u> + 1 = 0, to prove the existence of a large class

of closed, orientable 3-manifolds with virtually Z-representable fundamental

groups. In particular, these manifolds have finite covers with positive first

Betti number.

1. Let M be a compact 3-manifold. We say that M has a virtually Z-representa-

ble fundamental group if some finite index subgroup G C 7Ti (A2) maps epimorphi-

cally to Z, or equivalently, if M has a finite sheeted cover M with rank 22i (M) > 1.

If M is compact, orientable, and irreducible, then the virtual Z-representability of

7T1(A2) implies that the above cover M is a Haken manifold (cf. [Hl]). Waldhausen

has conjectured that a closed, orientable, irreducible 3-manifold M with infinite

fundamental group is virtually Haken i.e. is finitely covered by a Haken manifold.

Hence a stronger version of this conjecture is that every such M has a virtually

Z-representable fundamental group.

In this paper we prove the existence of a large class of closed, orientable 3-

manifolds with virtually Z-representable fundamental groups. Let M be a closed,

orientable 3-manifold. Then M can be realized as a branched cover of S3, branched

over the figure eight knot, K [HLM]. We prove:

THEOREM. Let M be a closed, orientable 3-manifold which is a branched cover

of S3, branched over the figure eight knot with all branching indices divisible by a

common integer n > 5.  Then M has a virtually Z-representable fundamental group.

Note. Using different methods, Hempel [H2] has proved this result in the case

where the branching indices are all equal to an odd integer n > 3.

In [B] we showed that for n > 5 the n-fold branched cyclic covers of S3 branched

over the figure eight knot had virtually Z-representable fundamental groups. The

above theorem generalizes this result.

2. Let M —► S3 be branched over the figure eight knot, K, with all branching

indices divisible by a common integer n > 5, and let X —> N be the associated un-

branched cover obtained by removing an open tubular neighborhood of the branch

set K and its inverse image (thus dX, dN are disjoint unions of tori).
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We will use the fact that N= S3\K has an arithmetic hyperbolic structure.

Specificially

ni{N) = {x,y \ {x  *yxy  1)x{x ~lyxy  l)   l =y)

and there is a discrete, faithful representation ni(N)

w + 1 — 0, given by

1
-w

PSLa(Z[w]), where u2 +

y

(cf. [R]). Denote by Tk (resp. T) the image of 7Ti(2V) (resp. 7Ti(A) c 7Ti(2V)) in

PSL2(Z[o;]) under this representation.

A meridian loop p in dN can be chosen so that [p] = x. In each component of

dX there is a loop a¿ that projects r¿ to 1 onto p, where r¿ is the corresponding

branching index in the branched cover M —► S3. Hence it follows that the loop a¿

corresponds to a homotopy class in 7Ti (A) represented in T by an element of the

form

Ä-lRi

where R¡ E TK.

3. Consider the regular cover y-»X corresponding to the normal subgroup

T fl T(n) c r, where T{n) C PSL2(Z[w]) is the n-principal congruence subgroup

(cf. [S]).

LEMMA 1. The loops ai in dX lift to loops in the boundary tori of Y {hence

these lifted loops project homeomorphically to the a¿).

PROOF. The loops a¿ in 7Ti (A) are represented in T by elements of the form

Ri II' Ri S Ttf,

which are also in V n T(n) since

ET{n)

{n | r¿ by assumption) and T(n) is normal in PSL2(Z[w]).    D

Now in each component of dY covering the component of dX containing a¿,

choose one lift ßij of a¿. Then it follows that

LEMMA 2. The cover Y —» A extends to a regular {unbranched) cover M —> M

by performing Dehn filling on X and on Y with respect to the loops {a¿} in dX

and {ßij} in dY.

By Dehn filling on a 3-manifold P with respect to a loop in a boundary torus

we mean attaching a solid torus to dP so that this loop bounds a meridional disk

in the solid torus.

4. We complete the proof of our theorem by showing that the cover M —* M

constructed in §3 satisfies rank 22i(M) > 1. To see this, consider the cover Y —► A

from which we obtained M —* M by Dehn filling. Let i: dY —> Y be the inclusion

map. Then it suffices to show that

(*) rank[221(F)A,(221((3y))]>l.
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Given a finite index subgroup G C PSL2(Z[w]), denote by Uq C G the (normal)

subgroup generated by the parabolic matrices of G.

Definition. d{G) = dimQ((G/£/G)ab ®z Q)

LEMMA 3.   IfG'cG is of finite index, then d{G') > d{G).

PROOF. Since G' C G is of finite index, the homomorphism, {G'/Ug')^ ®zQ -*

{G/UGYh ®z Q is surjective.    D

LEMMA 4.  d(rnr(n)) = rank[22i(y)/ù(22i(dy))]

PROOF. Follows from the isomorphism 7Ti(Y) = mr(n) and the correspondence

between homotopy classes of loops in dY and parabolic matrices of T C\ T{n).    D

Now since T fl T(n) C T(n), (*) follows from Lemmas 3-4 and

Lemma 5.  For n > 5, d{T{n)) > 1.

PROOF. Let Zn[w] C Z[w] denote the order of index n. Since

T{n) C PSL2(Zn[w])

is of finite index, it suffices to prove the lemma for PSL2(Zn[w]), n > 5. Grunewald

and Schwermer [GS] show that d(PSL2(Z„[w])) > card(W) — 1, where W is the set

of natural numbers m satisfying the following conditions:

(a)tn>0,m/ 2, (m, n) = 1,

(b) 4m2 < 3n2 - 3,

(c) every prime divisor of m is inert in Z[u>].

Thus if n > 6 and (5,n) = 1, then {1,5} C W and we are done.   If 5|n, then

PSL2(Zn[w]) c PSL2(Z5[u;]) and a computation gives <2(PSL2(Z5[u;])) > 1.    D
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