UNDEFINABLE CLASSES AND DEFINABLE ELEMENTS IN MODELS OF SET THEORY AND ARITHMETIC

ALI ENAYAT
(Communicated by Thomas J. Jech)

Abstract

Every countable model \mathbf{M} of PA or ZFC, by a theorem of S. Simpson, has a "class" X which has the curious property: Every element of the expanded structure (\mathbf{M}, X) is definable. Here we prove:

Theorem A. Every completion T of PA has a countable model \mathbf{M} (indeed there are 2^{ω} many such \mathbf{M} 's for each T) which is not pointwise definable and yet becomes pointwise definable upon adjoining any undefinable class X to \mathbf{M}.

Theorem B. Let $\mathbf{M} \vDash \mathrm{ZF}+$ " $V=\mathrm{HOD}$ " be a well-founded model of any cardinality. There exists an undefinable class X such that the definable points of \mathbf{M} and (\mathbf{M}, X) coincide.

THEOREMC. Let $\mathbf{M} \vDash$ PA or $\mathbf{Z F}+$ " $V=$ HOD". There exists an undefinable class X such that the definable points of \mathbf{M} and (\mathbf{M}, X) coincide if one of the conditions below is satisfied. (A) The definable elements of \mathbf{M} are cofinal in \mathbf{M}. (B) \mathbf{M} is recursively saturated and $\operatorname{cf}(\mathbf{M})=\omega$.

Let \mathbf{M} be a model of Peano arithmetic PA (or Zermelo-Fraenkel set theory ZF). A subset X of \mathbf{M} is said to be a class of \mathbf{M} if the expanded structure (\mathbf{M}, X) continues to satisfy the induction scheme (replacement scheme) for formulas of the extended language.
S. Simpson $[\mathbf{S i}]$, employing the notion of forcing introduced by Feferman in $[\mathbf{F}]$ proved the following surprising result:

Theorem (SIMPSON). Let \mathbf{M} be a countable model of PA or ZFC. There exists a class X such that every element of \mathbf{M} is definable in (\mathbf{M}, X).

In view of this theorem we ask the question: Does every countable model of PA or ZFC have a class X such that no new definable elements appear in (\mathbf{M}, X)? Of course to make the question nontrivial, we should also stipulate that X is to be an undefinable subset of \mathbf{M}. The "obvious" answer of "yes" turns out to be the wrong one, as witnessed by Theorem A below.

THEOREM A. Every completion T of PA has continuum-many pairwise nonisomorphic models \mathbf{M} with the property: for every class X of \mathbf{M}, if X is not first order definable by parameters, then every element of \mathbf{M} is definable in (\mathbf{M}, X).

Proof. Let \mathbf{M}_{0} be the atomic model of T. By Gaifman [G] there exist 2^{ω}-many pairwise nonisomorphic M's each of which is a minimal conservative elementary

Received by the editors March 10, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 03C62, 03H15; Secondary 03C50, 03C25.
(end) extension of \mathbf{M}_{0}, i.e.,
(a) $\mathbf{M}_{0} \preccurlyeq \mathbf{N} \preccurlyeq \mathbf{M} \Rightarrow\left(\mathbf{M}_{0}=\mathbf{N}\right.$ or $\left.\mathbf{N}=\mathbf{M}\right)$.
(b) For every (parameter) definable $X \subseteq \mathbf{M}, X \cap \mathbf{M}_{0}$ is (parameter) definable in \mathbf{M}_{0}.

Given an element e of \mathbf{M}, let $(<e)$ denote the set of predecessors of e in \mathbf{M}. Note that if X is a class of \mathbf{M}, then for each $m \in \mathbf{M}, X \cap(<m)$ is "coded". Therefore, $X \cap \mathbf{M}_{0}$ is definable by a formula $\Psi(\cdot, \vec{a})$, where $\vec{a} \in \mathbf{M}_{0}$, since if $b \in \mathbf{M}-\mathbf{M}_{0}$, $(<b) \cap X$ is a definable subset of \mathbf{M} and by (b) above, its intersection with \mathbf{M}_{0} must be definable.

Furthermore, if X is not definable by parameters, then the element m defined in (\mathbf{M}, X), as the first x witnessing X and $\Psi(\cdot, \vec{a})$ to diverge, must be in $\mathbf{M}-\mathbf{M}_{0}$. But if (\mathbf{M}, X) defines one element in $\mathbf{M}-\mathbf{M}_{0}$ then by the minimality of \mathbf{M} and the fact that there are definable Skolem functions, it must define every element of M.

Note that the proof of Theorem A does not go through for models of set theory since by [Ka and E1] no model of ZFC has a conservative elementary end extension, and indeed as shown in [E2], conservative elementary extensions must be cofinal. Minimal elementary end extensions of models of set theory on the other hand are possible, at least in the presence of a definable (global) well ordering. See [Kn, Lemma 2.3 or $\mathbf{S h}$, Theorem 2.1].

We do not know whether the statement of Theorem A is true when PA is replaced by ZF or even $\mathrm{ZF}+$ " $V=$ HOD". However, we have the following positive result.

Theorem B. Let \mathbf{M} be a well-founded model of $\mathrm{ZF}+$ " $V=\mathrm{HOD}$ " of any cardinality. There exists an undefinable class X such that the definable elements of (\mathbf{M}, X) and \mathbf{M} coincide.

Proof. We intend to use "Feferman-forcing" in the context of set theory. The forcing conditions are functions p mapping some ordinal α into $2=\{0,1\}$. The forcing language is the first order language whose alphabet consists of the binary relation \in, the unary predicate G, and a constant \mathbf{m} for every element $m \in \mathbf{M}$. Forcing is defined inductively as usual, and for each formula $\varphi(G, \vec{u})$, and any forcing condition p, the relation $p \Vdash \varphi(G, \vec{u})$ (between p and \vec{u}) is definable by some formula, $\operatorname{Force}_{\varphi}(p, \vec{u})$, in the language of $\{\epsilon\}$. We recommend $[\mathbf{K n}]$ for more detail.

The proof falls naturally into two cases.
Case (1). The definable elements of \mathbf{M} are cofinal in \mathbf{M}.
Case (2). Not Case (1).
Proof of Case (1). Let $A=\left\langle a_{n}: n\langle\omega\rangle\right.$ be a cofinal ω-sequence of definable ordinals of \mathbf{M} and let $\left\langle\varphi_{n}(G, \vec{u}), b_{n}\right\rangle_{n \in \omega}$ be an enumeration of the Cartesian product $A \times F$ where F is the set of formulas $\varphi(G, \vec{u})(\vec{u}$ is the sequence of free variables of φ) in the language $\{\epsilon, G\}$. We shall inductively construct a sequence S of forcing conditions $\left\langle p_{n}: n<\omega\right\rangle$ such that each p_{n} is a definable element of \mathbf{M}, and S is generic over \mathbf{M}.

$$
\begin{aligned}
& p_{0}=(\mu p)\left(\forall m \in R\left(b_{0}\right)\left(p \text { decides } \varphi_{0}(G, \vec{m})\right)\right) \\
& p_{n+1}=\left(\mu p \geq p_{n}\right)\left(\forall m \in R\left(b_{n+1}\right)\left(p \text { decides } \varphi_{n+1}(G, \vec{m})\right)\right)
\end{aligned}
$$

Here μ is the "least" operator available since we are assuming " $V=$ HOD", and " p decides φ " means $p \Vdash \varphi$ or $p \Vdash \neg \varphi$. Let \mathbf{M}_{0} be the elementary (cofinal) submodel of \mathbf{M} consisting of definable elements. It is clear that $S=\left\langle p_{n}: n<\omega\right\rangle$ determines a unique generic $X \subseteq \operatorname{Ord}\left(\mathbf{M}_{0}\right)$, as well as $X^{*} \subseteq \operatorname{Ord}(\mathbf{M})$, such that $\left(\mathbf{M}_{0}, X\right) \prec\left(\mathbf{M}, X^{*}\right)$. But if $m \in \bar{M}$ is definable in $\left(\mathbf{M}, X^{*}\right)$ by some formula $\Psi(G, \cdot)$ then we have

$$
\left(\mathbf{M}, X^{*}\right) \vDash(\exists!x \Psi(G, x)) \wedge \Psi(G, \mathbf{m})
$$

which implies

$$
\left(\mathbf{M}_{0}, X\right) \vDash \Psi(G, \mathbf{n}), \quad \text { for some } n \in M_{0}
$$

Since $\left(\mathbf{M}_{0}, X\right) \prec\left(\mathbf{M}, X^{*}\right), m=n$. Therefore all the definable elements of $\left(\mathbf{M}, X^{*}\right)$ lie in M_{0}, all members of which are definable in \mathbf{M}_{0}.

Note that we did not use the well-foundedness of M in Case (1).
Case (2). In this case the minimal elementary submodel \mathbf{M}_{0} is not cofinal in \mathbf{M} and therefore by well-foundedness, there exists an ordinal $\alpha_{0} \in \mathbf{M}$ which is the supremum of the ordinals of \mathbf{M}_{0}. Note that, by the "Factoring Theorem":

$$
\mathbf{M}_{0} \prec_{c}\left(R\left(\alpha_{0}\right)\right)^{\mathbf{M}} \prec_{e} \mathbf{M}
$$

(see Chapter 25 of $[\mathbf{K e}]$ for a proof).
Now inside M argue as follows: $\left(R\left(\alpha_{0}\right), \in\right)$ is a model of ZF + " $V=$ HOD" whose definable elements form a cofinal subset of $R\left(\alpha_{0}\right)$, hence by an (internal) application of the proof of Case (1), there exists an $X_{1} \subseteq \alpha_{0}$, such that X_{1} is generic over ($R\left(\alpha_{0}\right), \in$), and the definable elements of $\left(R\left(\alpha_{0}\right), \in\right)$ and ($\left.R\left(\alpha_{0}\right), \in, X_{1}\right)$ coincide.

Now we exploit the fact that $X_{1} \in \mathbf{M}$ to extend X_{1} to a generic X over \mathbf{M}. The proof falls into two cases again.

Case 2(A). $\operatorname{cf}(\mathbf{M})=\omega$.
Case 2(B). $\operatorname{cf}(\mathbf{M})>\omega$.
Case 2(A). This is the easier case: construct any generic X over \mathbf{M} extending X_{1}. This can be done by taking care of many formulas at a time as in the construction of Case (1), and we leave it to the reader. To see that $\left(\mathbf{M}_{\alpha_{0}}, X_{1}\right) \prec(\mathbf{M}, X)$, suppose $\left(\mathbf{M}_{\alpha_{0}}, X_{1}\right) \vDash \varphi(G, \overrightarrow{\mathbf{m}})$, then for some $p \in X_{1}$,

$$
\mathbf{M}_{\alpha_{0}} \vDash " p \Vdash \varphi(G, \overrightarrow{\mathbf{m}}) ",
$$

which implies

$$
\mathbf{M} \vDash " p \Vdash \varphi(G, \overrightarrow{\mathbf{m}}) ", \text { since } \mathbf{M}_{\alpha_{0}} \prec \mathbf{M}
$$

But $p \in X$ as well, so $\mathbf{M} \vDash \varphi(G, \overrightarrow{\mathbf{m}})$, and we are done.
Case 2(B). Here we use a clever trick due to M. Yasumoto who first used it to produce undefinable classes for any well-founded model of ZF in [Y]. A direct consequence of the reflection theorem and the fact that $\operatorname{cf}(\mathbf{M})>\omega$ is that there exists a closed unbounded subset $E \subseteq \operatorname{Ord}(\mathbf{M})$ such that for each $\alpha \in E$, the initial submodel $\mathbf{M}_{\alpha}=(R(\alpha))^{\mathbf{M}}$ is an elementary submodel of \mathbf{M}. Without loss of generality assume $E=\left\langle e_{\alpha}: \alpha<\eta\right\rangle$ where η is some ordinal, and $\mathbf{M}_{e_{\alpha}}=\alpha$ th initial elementary submodel of \mathbf{M}. Our plan is to construct $G_{\alpha} \subseteq \operatorname{Ord}\left(\mathbf{M}_{e_{\alpha}}\right)$ such that
(i) $X_{1} \subseteq G_{\alpha}$, for each $\alpha<\eta$,
(ii) G_{α} is generic over $\mathbf{M}_{e_{\alpha}}$, and $G_{\alpha} \in \mathbf{M}$,
(iii) whenever $\alpha<\beta<\eta, G_{\alpha} \subseteq G_{\beta}$.

Note that if such a sequence $\left\langle G_{\alpha}: \alpha<\eta\right\rangle$ is constructed, then by repeating the proof of Case 2(A), $\left(\mathbf{M}_{0}, X_{1}\right) \prec(\mathbf{M}, X)$ where $X=\bigcup_{\alpha<\eta} G_{\alpha}$.

To produce each G_{α} one argues as follows:
Suppose $\mathbf{M} \vDash(R(\theta) \vDash \mathrm{ZF}+$ " $V=\mathrm{HOD} ")(\theta$ need not be in $E)$. Then internally one can produce $X_{\theta} \in \mathbf{M}$ which is generic over $R(\theta)$, as follows:
(A) If the definable elements of $R(\theta)$ are cofinal in $R(\theta)$, then X_{θ} is constructed as in Case (1). Note that X_{θ} is absolute in the sense that the external and internal constructions outlined in Case (1) produce the same set.
(B) If the definable elements of $R(\theta)$ are not cofinal in $R(\theta)$, then $R(\theta)$ can be written as $\bigcup_{\alpha<\zeta} R\left(c_{\alpha}\right)$, where ς is some ordinal, and $R\left(c_{\alpha}\right)$ is the α th-elementary initial submodel of $R(\beta)$. Let Y_{1} be a set generic over $R\left(c_{1}\right)$, constructed as in (A) above (since the pointwise definable elements of $R\left(c_{1}\right)$ are cofinal in $R\left(c_{1}\right)$), and let Y_{2} be the first (in the OD-ordering) generic subset of $R\left(c_{2}\right)$ extending Y_{1}. (Note that $Y_{1} \in R\left(c_{2}\right)$ and the cofinality of $R\left(c_{2}\right)=\omega$.) We continue this process to get $\left\langle Y_{\alpha}: \alpha<\varsigma\right\rangle$ such that
$Y_{\alpha+1}=\mu Y\left(Y \supseteq Y_{\alpha}\right.$ and Y is generic over $\left.R\left(c_{\alpha+1}\right)\right)$,
$Y_{\alpha}=\bigcup_{\beta<\alpha} Y_{\beta}$, if α is limit.
Now let $X_{\theta}=\bigcup_{\alpha<\varsigma} Y_{\alpha}$. Clearly, X_{θ} is generic over $R(\theta)$.
We are finally prepared to define the G_{α} 's by $G_{\alpha}=X_{e_{\alpha}}$.
Note that conditions (i) and (ii) which we set out to satisfy are easy to verify, and condition (iii) is satisfied because of the fact that $\mathbf{M}_{e_{\alpha}} \prec \mathbf{M}_{e_{\beta}}$ whenever $\alpha<$ $\beta<\eta$.

Theorem C. If $\mathbf{M} \vDash \mathrm{PA}$ or $\mathrm{ZF}+$ " $V=\mathrm{HOD} "$ and \mathbf{M} satisfies condition (I) or (II) below, then there exists an undefinable class X such that the definable elements of \mathbf{M} and (\mathbf{M}, X) coincide.
(I) \mathbf{M} is recursively saturated and $\operatorname{cf}(\mathbf{M})=\omega$.
(II) The definable elements of \mathbf{M} are cofinal in \mathbf{M}.

Proof. (I) Let $\left(\varphi_{n}(G): n<\omega\right)$ be a recursive enumeration of the sentences of $\{\in, G\}$ in the case of set theory, and $\{+, \cdot, 0,1, G\}$ in the case of arithmetic; and μ be the "least" operator available in PA and $\mathrm{ZF}+V=\mathrm{HOD}$.

Let us describe a recursive type $\Sigma(x)=\left\{\sigma_{n}(x): n<\omega\right\}$, where

$$
\begin{aligned}
& \sigma_{0}(x) \text { says " } x \supseteq \mu p\left(p \text { decides } \varphi_{0}(G)\right) \text { " } \\
& \sigma_{n+1}(x) \text { says " } x \supseteq \mu p\left(p \text { decides } \varphi_{n+1}(G)\right) \text { and } \sigma_{n}(x) \text { ". }
\end{aligned}
$$

Choose some condition $p \in M$ to realize $\Sigma(x)$ and extend p to any generic G over M. By the same argument as Case 2(A) of the proof of Theorem B:

$$
\left(\mathbf{M}_{0}, G \cap \mathbf{M}_{0}\right) \prec(\mathbf{M}, G),
$$

where \mathbf{M}_{0} is the minimal elementary submodel of \mathbf{M}. Hence the proof is complete.
(II) This is really what Case 1 of Theorem B proves. (Note that well-foundedness was not used there.)

We close with a conjecture:
CONJECTURE. The statement of Theorem A is true with "PA" replaced by $" \mathrm{ZF}+V=\mathrm{HOD} "$.

References

[E1] A. Enayat, On certain elementary extensions of models of set theory, Trans. Amer. Math. Soc. 283 (1984), 705-715.
[E2] , Conservative extensions of models of set theory and generalizations, J. Symbolic Logic 51 (1986), 1005-1021.
[F] S. Feferman, Some applications of the notion of forcing and generic sets, Fund. Math. 56 (1965), 324-345.
[G] H. Gaifman, Models and types of Peano arithmetic, Ann. Math. Logic 9 (1976), 223-306.
[Ka] M. Kaufmann, Blunt and topless extensions of models of set theory, J. Symbolic Logic 48 (1983), 1053-1073.
[Ke] H. J. Keisler, Model theory for infinitary logic, North-Holland, Amsterdam, 1971.
[Kn] J. Knight, Hanf numbers for omitting types over particular theories, J. Symbolic Logic 41 (1976), 583-588.
[Sh] S. Shelah, End extensions and number of countable models, J. Symbolic Logic 43 (1978), 550562.
[Si] S. Simpson, Forcing and models of arithmetic, Proc. Amer. Math. Soc. 43 (1974), 193-194.
[Y] M. Yasumoto, Classes on models of ZF, J. Math. Soc. Japan 32 (1980), 615-621.
Department of Mathematics and Statistics, The American University, WASHINGTON, D.C. 20016

