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ABSTRACT. Every countable model M of PA or ZFC, by a theorem of S.

Simpson, has a "class" X which has the curious property: Every element of

the expanded structure (M, X) is definable. Here we prove:

THEOREM A. Every completion T of PA has a countable model M (indeed

there are 2" many such M 's for each T) which is not pointwise definable and yet

becomes pointwise definable upon adjoining any undefinable class X to M.

THEOREM B. Let M 1= ZF + "V = HOD" be a well-founded model of any
cardinality. There exists an undefinable class X such that the definable points of

M and (M, X) coincide.

THEOREM C. Let M t= PA or ZF +"V = HOD". There exists an undefinable

class X such that the definable points of M and (M, X) coincide if one of the

conditions below is satisfied.

(A) The definable elements o/M are cofinal in M.

(B) M is recursively saturated and cf (M) = uj.

Let M be a model of Peano arithmetic PA (or Zermelo-Fraenkel set theory ZF).

A subset A of M is said to be a class of M if the expanded structure (M,A)

continues to satisfy the induction scheme (replacement scheme) for formulas of the

extended language.

S. Simpson [Si], employing the notion of forcing introduced by Feferman in [F]

proved the following surprising result:

THEOREM (SIMPSON). Let M be a countable model of PA or ZFC. There

exists a class X such that every element o/M is definable in (M, A).

In view of this theorem we ask the question: Does every countable model of PA

or ZFC have a class A such that no new definable elements appear in (M, A)? Of

course to make the question nontrivial, we should also stipulate that A is to be an

undefinable subset of M. The "obvious" answer of "yes" turns out to be the wrong

one, as witnessed by Theorem A below.

THEOREM A. Every completion T of PA has continuum—many pairwise non-

isomorphic models M with the property: for every class X o/M, if X is not first

order definable by parameters, then every element o/M is definable in (M,X).

PROOF. Let M0 be the atomic model of T. By Gaifman [G] there exist 2w-many

pairwise nonisomorphic M's each of which is a minimal conservative elementary
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(end) extension of Mo, i.e.,

(a) M0 ^ N =<: M => (M0 = N or N = M).

(b) For every (parameter) definable A Ç M, A n M0 is (parameter) definable

in M0.

Given an element e of M, let (< e) denote the set of predecessors of e in M. Note

that if A is a class of M, then for each m E M, A n (< m) is "coded". Therefore,

A n Mq is definable by a formula ^l(-, a), where a G Mo, since if b E M — Mo,

(< 6) n X is a definable subset of M and by (b) above, its intersection with Mo

must be definable.

Furthermore, if A is not definable by parameters, then the element m defined in

(M, A), as the first x witnessing A and $(•, a) to diverge, must be in M — Mo-

But if (M, A) defines one element in M — M0 then by the minimality of M and

the fact that there are definable Skolem functions, it must define every element of

M.    D

Note that the proof of Theorem A does not go through for models of set theory

since by [Ka and El] no model of ZFC has a conservative elementary end extension,

and indeed as shown in [E2], conservative elementary extensions must be cofinal.

Minimal elementary end extensions of models of set theory on the other hand are

possible, at least in the presence of a definable (global) well ordering. See [Kn,

Lemma 2.3 or Sh, Theorem 2.1].

We do not know whether the statement of Theorem A is true when PA is replaced

by ZF or even ZF + " V = HOD ". However, we have the following positive result.

THEOREM B. Let M be a well-founded model of ZF + "V = HOD" of any
cardinality. There exists an undefinable class X such that the definable elements of

(M, A) and M coincide.

PROOF. We intend to use "Feferman-forcing" in the context of set theory. The

forcing conditions are functions p mapping some ordinal a into 2 = {0,1}. The

forcing language is the first order language whose alphabet consists of the binary

relation G, the unary predicate G, and a constant m for every element m E M.

Forcing is defined inductively as usual, and for each formula <p(G, u), and any

forcing condition p, the relation p I h <p(G, u) (between p and u) is definable by

some formula, Forcev3(p, u), in the language of {g}. We recommend [Kn] for more

detail.

The proof falls naturally into two cases.

Case (1). The definable elements of M are cofinal in M.

Case (2). Not Case (1).

Proof of Case (1). Let A = (an : n < u>) be a cofinal w-sequence of definable or-

dinals of M and let (<pn(G, u),bn)n€u) be an enumeration of the Cartesian product

Ax F where F is the set of formulas <p(G, u) (u is the sequence of free variables of

ip) in the language {e,G}. We shall inductively construct a sequence S of forcing

conditions (p„ : n < w) such that each pn is a definable element of M, and S is

generic over M.

Po = (pp)(Vm E R(b0)(p decides <p0(G,m))),

Pn+i = (PP > Pn)(Vm E R(bn+i)(p decides <pn+i(G,m))).
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Here p is the "least" operator available since we are assuming "V = HOD",

and "p decides <p" means p lh <p or p II-><p.  Let Mo be the elementary (cofinal)

submodel of M consisting of definable elements. It is clear that S = (pn : n < w)

determines a unique generic A Ç Ord(M0), as well as A* C Ord(M), such that

(M0, A) -< (M, A*). But if m G M is definable in (M, A*) by some formula f (G, ■)

then we have

(M, A*) 1= (3\x9{G, x)) A *(G, m),

which implies

(M0, A) 1= *(G, n),    for some n E M0.

Since (M0, A) -< (M, A*), m = n. Therefore all the definable elements of (M, A*)

lie in Mo, all members of which are definable in Mo.

AoZe that we did not use the well-foundedness of M in Case (1).

Case (2). In this case the minimal elementary submodel Mo is not cofinal in

M and therefore by well-foundedness, there exists an ordinal a0 E M which is the

supremum of the ordinals of Mo. Note that, by the "Factoring Theorem":

M0 <c (R(a0))M <e M

(see Chapter 25 of [Ke] for a proof).

Now inside M argue as follows: (R(a0), E) is a model of ZF + " V = HOD" whose

definable elements form a cofinal subset of ¿?(cto)> hence by an (internal) application

of the proof of Case (1), there exists an Ai Ç «o, such that Ai is generic over

(¿2(ao),G), and the definable elements of (¿2(ao),G) and (R(a0),E, Ai) coincide.

Now we exploit the fact that Xx E M to extend Ai to a generic A over M. The

proof falls into two cases again.

Case 2(A). cf(M) = w.

Case 2(B). cf(M) > w.

Case 2(A). This is the easier case: construct any generic A over M extending At.

This can be done by taking care of many formulas at a time as in the construction of

Case (1), and we leave it to the reader. To see that (MQo, Ai) -< (M, A), suppose

(Mao, Xi ) N <p(G, m), then for some p G Ai,

Maoh"plh^(G,m)",

which implies

M 1= "p lh <p(G,m)n, since M„0 -< M.

But p G A as well, so M N <p(G, m), and we are done.

Case 2(B). Here we use a clever trick due to M. Yasumoto who first used it

to produce undefinable classes for any well-founded model of ZF in [Y]. A direct

consequence of the reflection theorem and the fact that cf(M) > w is that there

exists a closed unbounded subset E C Ord(M) such that for each a E E, the

initial submodel MQ = (R(a))M is an elementary submodel of M. Without loss of

generality assume E = (ea : a < n) where n is some ordinal, and MeQ = ath initial

elementary submodel of M. Our plan is to construct Ga Ç Ord(MeQ) such that

(i) Xi Ç Ga, for each a < n,

(ii) Ga is generic over MeQ, and Ga E M,

(hi) whenever a < ß < n, Ga C Gß.

Note that if such a sequence (Ga : a < n) is constructed, then by repeating the

proof of Case 2(A), (M0, Xx) < (M, A) where A = UQ<„ Ga.
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To produce each Ga one argues as follows:

Suppose M £ (R(9) h ZF+ "V = HOD") (9 need not be in E). Then internally
one can produce Xg E M which is generic over R(9), as follows:

(A) If the definable elements of ¿2(0) are cofinal in R(9), then Xg is constructed

as in Case (1). Note that Xß is absolute in the sense that the external and internal

constructions outlined in Case (1) produce the same set.

(B) If the definable elements of R(9) are not cofinal in R(9), then R(9) can be

written as Ua<ç-^(c«)i wnere <T is some ordinal, and R(ca) is the ath-elementary

initial submodel of R(ß). Let Yi be a set generic over ¿2(ci), constructed as in (A)

above (since the pointwise definable elements of ¿2(ci) are cofinal in ¿?(ci)), and let

Yi be the first (in the OD-ordering) generic subset of ¿Î(c2) extending Y\. (Note

that Yi G ¿?(c2) and the cofinality of ¿2(c2) = w.) We continue this process to get

(Ya : a < c) such that

Ya+i = pY (Y D Ya and Y is generic over ¿i(cQ+i)),

Ya = \J0<a Yß, if a is limit.

Now let Xß = \Ja<i Ya. Clearly, Xg is generic over R(9).

We are finally prepared to define the Ga 's by Ga = Xea.

Note that conditions (i) and (ii) which we set out to satisfy are easy to verify,

and condition (iii) is satisfied because of the fact that M.ga < MC/3 whenever a <

ß < n.   D

THEOREM C. If M 1= PA or ZF +"V = HOD" and M satisfies condition (I) or
(II) below, then there exists an undefinable class X such that the definable elements

of M and (M, A) coincide.

(I) M is recursively saturated and cf (M) = w.

(II) The definable elements o/M are cofinal in M.

PROOF. (I) Let (<pn(G) : n < lj) he a recursive enumeration of the sentences of

{G, G} in the case of set theory, and {+, -, 0,1, G} in the case of arithmetic; and p

be the "least" operator available in PA and ZF + V — HOD.

Let us describe a recursive type E(x) = {crn(x) : n < u>}, where

oq(x) says ux 2 PP(p decides ^o(G))"

an+i(x) says "z D pp(p decides ^>„+i(G)) and an(x)".

Choose some condition p G M to realize E(z) and extend p to any generic G

over M. By the same argument as Case 2(A) of the proof of Theorem B:

(M0,GnMoH(M,G),

where Mo is the minimal elementary submodel of M. Hence the proof is complete.

(II) This is really what Case 1 of Theorem B proves. (Note that well-foundedness

was not used there.)    D

We close with a conjecture:

CONJECTURE. The statement of Theorem A is true with "PA" replaced by
"ZF+V = HOD".
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