UNDEFINABLE CLASSES AND DEFINABLE ELEMENTS IN MODELS OF SET THEORY AND ARITHMETIC

ALI ENAYAT

(Communicated by Thomas J. Jech)

ABSTRACT. Every countable model \mathbf{M} of PA or ZFC, by a theorem of S. Simpson, has a "class" X which has the curious property: Every element of the expanded structure (\mathbf{M}, X) is definable. Here we prove:

THEOREM A. Every completion T of PA has a countable model M (indeed there are 2^{ω} many such M's for each T) which is not pointwise definable and yet becomes pointwise definable upon adjoining any undefinable class X to M.

THEOREM B. Let $\mathbf{M} \models \mathbf{ZF} + "V = \mathbf{HOD}"$ be a well-founded model of any cardinality. There exists an undefinable class X such that the definable points of \mathbf{M} and (\mathbf{M}, X) coincide.

THEOREM C. Let $\mathbf{M} \models \mathbf{PA}$ or $\mathbf{ZF} + "V = \mathbf{HOD}"$. There exists an undefinable class X such that the definable points of \mathbf{M} and (\mathbf{M}, X) coincide if one of the conditions below is satisfied.

(A) The definable elements of M are cofinal in M.

(B) **M** is recursively saturated and $cf(\mathbf{M}) = \omega$.

Let **M** be a model of Peano arithmetic PA (or Zermelo-Fraenkel set theory ZF). A subset X of **M** is said to be a *class* of **M** if the expanded structure (\mathbf{M}, X) continues to satisfy the induction scheme (replacement scheme) for formulas of the extended language.

S. Simpson [Si], employing the notion of forcing introduced by Feferman in [F] proved the following surprising result:

THEOREM (SIMPSON). Let \mathbf{M} be a countable model of PA or ZFC. There exists a class X such that every element of \mathbf{M} is definable in (\mathbf{M}, X) .

In view of this theorem we ask the question: Does every countable model of PA or ZFC have a class X such that no new definable elements appear in (\mathbf{M}, X) ? Of course to make the question nontrivial, we should also stipulate that X is to be an undefinable subset of \mathbf{M} . The "obvious" answer of "yes" turns out to be the wrong one, as witnessed by Theorem A below.

THEOREM A. Every completion T of PA has continuum—many pairwise nonisomorphic models M with the property: for every class X of M, if X is not first order definable by parameters, then every element of M is definable in (M, X).

PROOF. Let \mathbf{M}_0 be the atomic model of T. By Gaifman [G] there exist 2^{ω} -many pairwise nonisomorphic \mathbf{M} 's each of which is a *minimal conservative* elementary

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors March 10, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 03C62, 03H15; Secondary 03C50, 03C25.

(end) extension of \mathbf{M}_0 , i.e.,

(a) $\mathbf{M}_0 \preccurlyeq \mathbf{N} \preccurlyeq \mathbf{M} \Rightarrow (\mathbf{M}_0 = \mathbf{N} \text{ or } \mathbf{N} = \mathbf{M}).$

(b) For every (parameter) definable $X \subseteq \mathbf{M}, X \cap \mathbf{M}_0$ is (parameter) definable in \mathbf{M}_0 .

Given an element e of \mathbf{M} , let $(\langle e \rangle)$ denote the set of predecessors of e in \mathbf{M} . Note that if X is a class of \mathbf{M} , then for each $m \in \mathbf{M}$, $X \cap (\langle m \rangle)$ is "coded". Therefore, $X \cap \mathbf{M}_0$ is definable by a formula $\Psi(\cdot, \vec{a})$, where $\vec{a} \in \mathbf{M}_0$, since if $b \in \mathbf{M} - \mathbf{M}_0$, $(\langle b \rangle) \cap X$ is a definable subset of \mathbf{M} and by (b) above, its intersection with \mathbf{M}_0 must be definable.

Furthermore, if X is not definable by parameters, then the element m defined in (\mathbf{M}, X) , as the first x witnessing X and $\Psi(\cdot, \vec{a})$ to diverge, must be in $\mathbf{M} - \mathbf{M}_0$. But if (\mathbf{M}, X) defines one element in $\mathbf{M} - \mathbf{M}_0$ then by the minimality of \mathbf{M} and the fact that there are definable Skolem functions, it must define every element of \mathbf{M} . \Box

Note that the proof of Theorem A does not go through for models of set theory since by [Ka and E1] no model of ZFC has a conservative elementary end extension, and indeed as shown in [E2], conservative elementary extensions must be *cofinal*. Minimal elementary end extensions of models of set theory on the other hand are possible, at least in the presence of a definable (global) well ordering. See $[Kn, \text{Lemma } 2.3 \text{ or } \mathbf{Sh}$, Theorem 2.1].

We do not know whether the statement of Theorem A is true when PA is replaced by ZF or even ZF + V = HOD. However, we have the following positive result.

THEOREM B. Let M be a well-founded model of ZF + "V = HOD" of any cardinality. There exists an undefinable class X such that the definable elements of (M, X) and M coincide.

PROOF. We intend to use "Feferman-forcing" in the context of set theory. The forcing conditions are functions p mapping some ordinal α into $2 = \{0, 1\}$. The forcing language is the first order language whose alphabet consists of the binary relation \in , the unary predicate G, and a constant \mathbf{m} for every element $m \in \mathbf{M}$. Forcing is defined inductively as usual, and for each formula $\varphi(G, \vec{u})$, and any forcing condition p, the relation $p \Vdash \varphi(G, \vec{u})$ (between p and \vec{u}) is definable by some formula, Force $\varphi(p, \vec{u})$, in the language of $\{\in\}$. We recommend [**Kn**] for more detail.

The proof falls naturally into two cases.

Case (1). The definable elements of \mathbf{M} are cofinal in \mathbf{M} .

Case (2). Not Case (1).

Proof of Case (1). Let $A = \langle a_n : n < \omega \rangle$ be a cofinal ω -sequence of definable ordinals of **M** and let $\langle \varphi_n(G, \vec{u}), b_n \rangle_{n \in \omega}$ be an enumeration of the Cartesian product $A \times F$ where F is the set of formulas $\varphi(G, \vec{u})$ (\vec{u} is the sequence of free variables of φ) in the language $\{\in, G\}$. We shall inductively construct a sequence S of forcing conditions $\langle p_n : n < \omega \rangle$ such that each p_n is a definable element of **M**, and S is generic over **M**.

$$p_0 = (\mu p)(\forall m \in R(b_0)(p \text{ decides } \varphi_0(G, \overline{m}))),$$

$$p_{n+1} = (\mu p \ge p_n)(\forall m \in R(b_{n+1})(p \text{ decides } \varphi_{n+1}(G, \overline{m})))$$

ALI ENAYAT

Here μ is the "least" operator available since we are assuming "V = HOD", and "p decides φ " means $p \Vdash \varphi$ or $p \Vdash \neg \varphi$. Let \mathbf{M}_0 be the elementary (cofinal) submodel of \mathbf{M} consisting of definable elements. It is clear that $S = \langle p_n : n < \omega \rangle$ determines a unique generic $X \subseteq \text{Ord}(\mathbf{M}_0)$, as well as $X^* \subseteq \text{Ord}(\mathbf{M})$, such that $(\mathbf{M}_0, X) \prec (\mathbf{M}, X^*)$. But if $m \in M$ is definable in (\mathbf{M}, X^*) by some formula $\Psi(G, \cdot)$ then we have

$$(\mathbf{M}, X^*) \vDash (\exists ! x \Psi(G, x)) \land \Psi(G, \mathbf{m}),$$

which implies

$$(\mathbf{M}_0, X) \models \Psi(G, \mathbf{n}), \text{ for some } n \in M_0.$$

Since $(\mathbf{M}_0, X) \prec (\mathbf{M}, X^*)$, m = n. Therefore all the definable elements of (\mathbf{M}, X^*) lie in M_0 , all members of which are definable in \mathbf{M}_0 .

Note that we did not use the well-foundedness of M in Case (1).

Case (2). In this case the minimal elementary submodel \mathbf{M}_0 is not cofinal in \mathbf{M} and therefore by well-foundedness, there exists an ordinal $\alpha_0 \in \mathbf{M}$ which is the supremum of the ordinals of \mathbf{M}_0 . Note that, by the "Factoring Theorem":

$$\mathbf{M}_0 \prec_c (R(\alpha_0))^{\mathbf{M}} \prec_e \mathbf{M}$$

(see Chapter 25 of [Ke] for a proof).

Now inside M argue as follows: $(R(\alpha_0), \in)$ is a model of ZF + "V = HOD" whose definable elements form a cofinal subset of $R(\alpha_0)$, hence by an (internal) application of the proof of Case (1), there exists an $X_1 \subseteq \alpha_0$, such that X_1 is generic over $(R(\alpha_0), \in)$, and the definable elements of $(R(\alpha_0), \in)$ and $(R(\alpha_0), \in, X_1)$ coincide.

Now we exploit the fact that $X_1 \in \mathbf{M}$ to extend X_1 to a generic X over \mathbf{M} . The proof falls into two cases again.

Case 2(A). $cf(\mathbf{M}) = \omega$.

Case 2(B). $cf(\mathbf{M}) > \omega$.

Case 2(A). This is the easier case: construct any generic X over **M** extending X_1 . This can be done by taking care of many formulas at a time as in the construction of Case (1), and we leave it to the reader. To see that $(\mathbf{M}_{\alpha_0}, X_1) \prec (\mathbf{M}, X)$, suppose $(\mathbf{M}_{\alpha_0}, X_1) \models \varphi(G, \mathbf{m})$, then for some $p \in X_1$,

$$\mathbf{M}_{\alpha_0} \models "p \Vdash \varphi(G, \mathbf{\overline{m}})",$$

which implies

$$\mathbf{M} \vDash "p \Vdash \varphi(G, \overline{\mathbf{m}})$$
", since $\mathbf{M}_{\alpha_0} \prec \mathbf{M}$.

But $p \in X$ as well, so $\mathbf{M} \models \varphi(G, \overline{\mathbf{m}})$, and we are done.

Case 2(B). Here we use a clever trick due to M. Yasumoto who first used it to produce undefinable classes for any well-founded model of ZF in [Y]. A direct consequence of the reflection theorem and the fact that $cf(\mathbf{M}) > \omega$ is that there exists a closed unbounded subset $E \subseteq Ord(\mathbf{M})$ such that for each $\alpha \in E$, the initial submodel $\mathbf{M}_{\alpha} = (R(\alpha))^{\mathbf{M}}$ is an *elementary submodel* of \mathbf{M} . Without loss of generality assume $E = \langle e_{\alpha} : \alpha < \eta \rangle$ where η is some ordinal, and $\mathbf{M}_{e_{\alpha}} = \alpha$ th initial elementary submodel of \mathbf{M} . Our plan is to construct $G_{\alpha} \subseteq Ord(\mathbf{M}_{e_{\alpha}})$ such that

(i) $X_1 \subseteq G_{\alpha}$, for each $\alpha < \eta$,

- (ii) G_{α} is generic over $\mathbf{M}_{e_{\alpha}}$, and $G_{\alpha} \in \mathbf{M}$,
- (iii) whenever $\alpha < \beta < \eta$, $G_{\alpha} \subseteq G_{\beta}$.

Note that if such a sequence $\langle G_{\alpha} : \alpha < \eta \rangle$ is constructed, then by repeating the proof of Case 2(A), $(\mathbf{M}_0, X_1) \prec (\mathbf{M}, X)$ where $X = \bigcup_{\alpha < \eta} G_{\alpha}$.

To produce each G_{α} one argues as follows:

Suppose $\mathbf{M} \models (R(\theta) \models ZF + "V = HOD")$ (θ need not be in E). Then internally one can produce $X_{\theta} \in \mathbf{M}$ which is generic over $R(\theta)$, as follows:

(A) If the definable elements of $R(\theta)$ are cofinal in $R(\theta)$, then X_{θ} is constructed as in Case (1). Note that X_{θ} is absolute in the sense that the external and internal constructions outlined in Case (1) produce the same set.

(B) If the definable elements of $R(\theta)$ are not cofinal in $R(\theta)$, then $R(\theta)$ can be written as $\bigcup_{\alpha < \varsigma} R(c_{\alpha})$, where ς is some ordinal, and $R(c_{\alpha})$ is the α th-elementary initial submodel of $R(\beta)$. Let Y_1 be a set generic over $R(c_1)$, constructed as in (A) above (since the pointwise definable elements of $R(c_1)$ are cofinal in $R(c_1)$), and let Y_2 be the first (in the OD-ordering) generic subset of $R(c_2)$ extending Y_1 . (Note that $Y_1 \in R(c_2)$ and the cofinality of $R(c_2) = \omega$.) We continue this process to get $\langle Y_{\alpha} : \alpha < \varsigma \rangle$ such that

 $Y_{\alpha+1} = \mu Y \ (Y \supseteq Y_{\alpha} \text{ and } Y \text{ is generic over } R(c_{\alpha+1})),$

 $Y_{\alpha} = \bigcup_{\beta < \alpha} Y_{\beta}$, if α is limit.

Now let $X_{\theta} = \bigcup_{\alpha < \varsigma} Y_{\alpha}$. Clearly, X_{θ} is generic over $R(\theta)$.

We are finally prepared to define the G_{α} 's by $G_{\alpha} = X_{e_{\alpha}}$.

Note that conditions (i) and (ii) which we set out to satisfy are easy to verify, and condition (iii) is satisfied because of the fact that $\mathbf{M}_{e_{\alpha}} \prec \mathbf{M}_{e_{\beta}}$ whenever $\alpha < \beta < \eta$. \Box

THEOREM C. If $\mathbf{M} \models \text{PA}$ or ZF + "V = HOD" and \mathbf{M} satisfies condition (I) or (II) below, then there exists an undefinable class X such that the definable elements of \mathbf{M} and (\mathbf{M}, X) coincide.

(I) **M** is recursively saturated and $cf(\mathbf{M}) = \omega$.

(II) The definable elements of \mathbf{M} are cofinal in \mathbf{M} .

PROOF. (I) Let $(\varphi_n(G): n < \omega)$ be a recursive enumeration of the sentences of $\{\in, G\}$ in the case of set theory, and $\{+, \cdot, 0, 1, G\}$ in the case of arithmetic; and μ be the "least" operator available in PA and ZF + V = HOD.

Let us describe a recursive type $\Sigma(x) = \{\sigma_n(x) : n < \omega\}$, where

$$\sigma_0(x)$$
 says " $x \supseteq \mu p(p \text{ decides } \varphi_0(G))$ "
 $\sigma_{n+1}(x)$ says " $x \supseteq \mu p(p \text{ decides } \varphi_{n+1}(G))$ and $\sigma_n(x)$ ".

Choose some condition $p \in M$ to realize $\Sigma(x)$ and extend p to any generic G over M. By the same argument as Case 2(A) of the proof of Theorem B:

$$(\mathbf{M}_0, G \cap \mathbf{M}_0) \prec (\mathbf{M}, G),$$

where \mathbf{M}_0 is the minimal elementary submodel of \mathbf{M} . Hence the proof is complete.

(II) This is really what Case 1 of Theorem B proves. (Note that well-foundedness was not used there.) \Box

We close with a conjecture:

CONJECTURE. The statement of Theorem A is true with "PA" replaced by "ZF + V = HOD".

ALI ENAYAT

References

- [E1] A. Enayat, On certain elementary extensions of models of set theory, Trans. Amer. Math. Soc. 283 (1984), 705-715.
- [E2] _____, Conservative extensions of models of set theory and generalizations, J. Symbolic Logic 51 (1986), 1005–1021.
- [F] S. Feferman, Some applications of the notion of forcing and generic sets, Fund. Math. 56 (1965), 324-345.
- [G] H. Gaifman, Models and types of Peano arithmetic, Ann. Math. Logic 9 (1976), 223-306.
- [Ka] M. Kaufmann, Blunt and topless extensions of models of set theory, J. Symbolic Logic 48 (1983), 1053-1073.
- [Ke] H. J. Keisler, Model theory for infinitary logic, North-Holland, Amsterdam, 1971.
- [Kn] J. Knight, Hanf numbers for omitting types over particular theories, J. Symbolic Logic 41 (1976), 583–588.
- [Sh] S. Shelah, End extensions and number of countable models, J. Symbolic Logic 43 (1978), 550– 562.
- [Si] S. Simpson, Forcing and models of arithmetic, Proc. Amer. Math. Soc. 43 (1974), 193-194.
- [Y] M. Yasumoto, Classes on models of ZF, J. Math. Soc. Japan 32 (1980), 615-621.

DEPARTMENT OF MATHEMATICS AND STATISTICS, THE AMERICAN UNIVERSITY, WASHINGTON, D.C. 20016