INTEGRAL BROWN-GITLER SPECTRA

FRED R. COHEN, DONALD M. DAVIS, PAUL G. GOERSS AND MARK E. MAHOWALD

(Communicated by Haynes R. Miller)

ABSTRACT. A Thom spectrum model for integral Brown-Gitler spectra is established and shown to have a multiplicative property. This clarifies certain aspects of an earlier application to splitting $bo \wedge bo$.

1. Statement of results. Brown-Gitler spectra have had many important applications in homotopy theory, most notably in [M1 and C1]. They were originally constructed in [BG] by a complicated Postnikov argument, but a Thom spectrum model suggested in [M1] and established to be correct in [C2] made them more down-to-earth.

Integral Brown-Gitler spectra at the prime 2 were introduced in [M2], where they were useful in a splitting of $bo \wedge bo$. A Thom spectrum model was suggested there, and an expanded account, including both Thom spectrum and Postnikov models, was presented in [Sh]. The odd-primary version of the Thom space model was discussed in [Ka]. In none of these is the base space for these Thom spectra explicitly defined. The purpose of this paper is to clarify the Thom spectrum model of integral Brown-Gitler spectra.

Recall that there is an isomorphism of Hopf algebras

(1.1)
$$H_*(\Omega^2 S^3) \approx E[x_j: j \ge 0] \otimes \mathbf{F}_p[y_j: j \ge 1] \quad \text{if } p \text{ odd}$$

with $|x_j| = 2p^j - 1$ and $|y_j| = 2p^j - 2$. The only modification required for p = 2 is $x_j^2 = y_{j+1}$. All homology groups have coefficients in the field \mathbf{F}_p with p elements, unless indicated otherwise. Define a weight on the monomials in $H_*(\Omega^2 S^3)$ by

$$\operatorname{wt}(x_j) = \operatorname{wt}(y_j) = p^j, \quad \operatorname{wt}(ab) = \operatorname{wt}(a) + \operatorname{wt}(b).$$

The space $\Omega^2 S^3$ admits an increasing filtration by spaces $F_n \Omega^2 S^3$, due to May and Milgram [May, Mil], such that $H_*(F_n \Omega^2 S^3) \subset H_*(\Omega^2 S^3)$ is the span of monomials of weight $\leq n$ [CLM, p. 239].

Let $S^{3}(3)$ denote the 3-connected cover of S^{3} . Then there is a homotopy fibration

$$\Omega^2 S^3 \langle 3 \rangle \to \Omega^2 S^3 \to S^1.$$

 $\Omega^2 S^3 \langle 3 \rangle$ was called W in [**DGM** and **M2**]. Using the multiplication on $\Omega^2 S^3$, one easily deduces $\Omega^2 S^3 \simeq S^1 \times \Omega^2 S^3 \langle 3 \rangle$, and so $H_*(\Omega^2 S^3 \langle 3 \rangle) \subset H_*(\Omega^2 S^3)$ is the span

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors October 20, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 55P42, 55P35.

Key words and phrases. Brown-Gitler spectra, Thom spectra, loop spaces.

All authors were supported by National Science Foundation research grants.

of monomials of weight divisible by p. The filtration on $\Omega^2 S^3$ induces a filtration on $H_*(\Omega^2 S^3\langle 3\rangle)$ by

$$F_n H_* \Omega^2 S^3 \langle 3 \rangle = H_* (F_n \Omega^2 S^3) \cap H_* (\Omega^2 S^3 \langle 3 \rangle),$$

the span of monomials of weight $\leq n$ and divisible by p. In [M2] for p = 2 and [Ka] for odd p, it was asserted without proof that $F_nH_*\Omega^2S^3\langle 3\rangle$ is induced by an actual filtration of the space $\Omega^2S^3\langle 3\rangle$. This does not follow for general reasons, but we shall show that it can be achieved after localization with respect to mod p homology.

We denote by X_p the Bousfield localization [**Bo**] of the space X with respect to the homology theory $H_*(-; \mathbf{F}_p) = H\mathbf{F}_{p*}$. For a fixed prime p, let $\mathcal{F}_n = (F_n \Omega^2 S^3)_p$. There are product maps

$$\mathcal{F}_m \times \mathcal{F}_n \xrightarrow{\mu} \mathcal{F}_{m+n}$$

induced by the corresponding maps for the filtration spaces and the fact that localization preserves finite products [Bo, 12.5]. Define A_n by the homotopy fibration sequence

(1.2)
$$A_n \to \mathcal{F}_{pn+1} \to S_n^1,$$

where the second map is the localization of the composite

$$F_{pn+1}\Omega^2 S^3 \to \Omega^2 S^3 \to S^1$$

It follows easily from the definitions and [Bo, 12.7] that the space A_n is $H\mathbf{F}_{p*}$ -local. Most of our effort is directed toward the following result, which is proved in §2.

THEOREM 1.3. The fiber sequence (1.2) is equivalent to a product fibration. Indeed, there is a map $A_n \xrightarrow{\phi} f_{pn}$ and a commutative diagram of fibrations

which is an equivalence on total spaces and on fibers.

Then $H_*(A_n) \approx F_{pn} H_*(\Omega^2 S^3(3))$, the span of monomials of weight pi with $i \leq n$.

REMARK. That H_*A_n is as claimed is not immediate from (1.2) and the Serre spectral sequence, since it is not clear *a priori* that the fibration of (1.2) is orientable. For example, the fibration $\mathcal{F}_{p^k} \to S_p^1$ is not orientable. Our Theorem 1.3 establishes the orientability in (1.2) indirectly.

In [M3], Mahowald constructed a stable spherical fibration ξ over $\Omega^2 S_p^3$ such that

- (i) the Thom spectrum T(ξ) is equivalent to the mod p Eilenberg-Mac Lane spectrum HZ/p,
- (ii) the Thom spectrum $T(\xi | \Omega^3 S^3 \langle 3 \rangle_p)$ is equivalent to the *p*-complete Eilenberg-Mac Lane spectrum HZ_p , and

1300

(iii) the Thom spectrum $T(\xi \mid F_n \Omega^2 S_p^3)$ is equivalent to the *n*th mod *p* Brown-Gitler spectrum B(n).

Expanded accounts appear in [Ka and CMT].

We define $B_1(n)$, the *n*th integral Brown-Gitler spectrum at p, to be the Thom spectrum $T(\xi \mid A_n)$, using the commutative diagram

Thomifying the composites

$$A_m \times A_n \xrightarrow{\phi_m \times \phi_n} \mathcal{F}_{pm} \times \mathcal{F}_{pn} \to \mathcal{F}_{pm+pn} \to \mathcal{F}_{pm+pn+1} \to A_{m+n},$$

where the last map splits the equivalence of 1.3, yields pairings $B_1(m) \wedge B_1(n) \rightarrow B_1(m+n)$. These pairings played a crucial role in the application to splitting $bo \wedge bo$ in [**DGM**, **Ka** and **M2**]. The clarification of their existence is a major reason for the care in this work.

It is clear from 1.3 that $T(i_n): B_1(n) \to H\mathbb{Z}_p^{\widehat{}}$ induces a monomorphism in homology. Recall Milnor's description

$$H_*(H\mathbf{Z}_p) = E[\chi(\tau_j): j \ge 1] \otimes \mathbf{F}_p[\chi(\xi_j): j \ge 1],$$

where $|\tau_j| = 2p^j - 1$, $|\xi_j| = 2p^j - 2$, and χ denotes the canonical antiautomorphism of the dual of the mod p Steenrod algebra \mathcal{A} . The usual modification $\tau_j^2 = \xi_{j+1}$ applies when p = 2. We define a weight by

$$\operatorname{wt}(\chi(\tau_j)) = \operatorname{wt}(\chi(\xi_j)) = p^j, \quad \operatorname{wt}(ab) = \operatorname{wt}(a) + \operatorname{wt}(b)$$

Note that all monomials have weight divisible by p. The relationship between these classes and those in (1.1) under the Thom isomorphism was discussed in [CMT].

The first two parts of the following theorem, which states the basic properties of integral Brown-Gitler spectra, now follow immediately from Theorem 1.3.

THEOREM 1.5. For n > 0, there is a p-complete spectrum $B_1(n)$ and a map

$$B_1(n) \xrightarrow{g} H\mathbf{Z}_p$$

such that

- (i) g_* sends $H_*(B_1(n))$ isomorphically onto the span of monomials of weight $\leq pn$;
- (ii) there are pairings

$$B_1(m) \wedge B_1(n) \rightarrow B_1(m+n)$$

whose homology homomorphism is compatible with the multiplication in $H_*(H\mathbf{Z}_{\widehat{p}});$

(iii) for any CW complex X,

$$g_*: B_1(n)_i(X) \to H_i(X; \mathbf{Z}_p)$$

is surjective if $i \leq 2p(n+1) - 1$.

Part (iii) is not easily proved from our perspective, but does follow from a straightforward adaptation of the proof of $[\mathbf{Sh}, 5.1]$, which was given only for p = 2. This adaptation requires a map from $B_1(n)$ into the mod p Brown-Gitler spectrum B(pn + 1) inducing the obvious inclusion in homology. Such a map follows immediately from the definitions and (1.4). The argument of $[\mathbf{Sh}]$ then allows us to deduce the surjectivity of $B_1(n)_*(X) \to H_*(X; \mathbf{Z}_p)$ from that of $B(pn + 1)_*(X) \to H_*(X; \mathbf{F}_p)$.

Many readers may be more familiar with the cohomology criterion

$$H^*(B_1(n)) \approx \mathcal{A}/\mathcal{A}(\beta, \chi P^i: i > n).$$

This is easily seen to be dual to (i) above. We also remark that our indexing differs from that of [Sh and Ka], who would call our spectrum $B_1(pn+1)$. We thank Don Shimamoto for helpful comments.

2. Proof of Theorem 1.3. We begin by showing that the inclusion $F_{m-1}\Omega^2 S^3 \rightarrow F_m \Omega^2 S^3$ may be considered as the inclusion into a mapping cone. Let Σ_m denote the symmetric group on m letters, and $F(\mathbf{R}^2, m)$ the space of m-tuples of distinct points in \mathbf{R}^2 . If X is a pointed Σ_m -space, we define

$$M_m(X) = F(\mathbf{R}^2, m) \times_{\Sigma_m} X / F(\mathbf{R}^2, m) \times_{\Sigma_m} *.$$

Let I denote the unit interval, \dot{I} its boundary, and ∂I^m the boundary of I^m .

LEMMA 2.1. Let $F_m = F_m \Omega^2 S^3$. There is a cofibration sequence

$$M_m(\partial I^m) \xrightarrow{c} F_{m-1} \to F_m.$$

REMARK. Extending this cofibration shows that $\Sigma M_m(\partial I^m) \simeq F_m/F_{m-1}$. In particular, $H_*(M_m(\partial I^m))$ is clear from the cofibration.

PROOF. Let $T^m(I/I)$ denote the fat wedge, consisting of points in the *m*-fold Cartesian product having at least one component the basepoint. Viewing I^m as the cone $C(\partial I^m)$ yields a Σ_m -equivariant cofibration

$$\partial I^m \to T^m(I/\dot{I}) \hookrightarrow (I/\dot{I})^{\times m}$$

and hence a cofibration

(2.2)
$$M_m(\partial I^m) \xrightarrow{k} M_m(T^m(I/\dot{I})) \to M_m((I/\dot{I})^{\times m})$$

Recall from [May] that

$$F_m = \left(\bigcup_{k \le m} M_k((I/\dot{I})^{\times k})\right) / \sim,$$

where, letting ^ denote omission,

(2.3)
$$(x_1, \ldots, x_k, t_1, \ldots, t_k) \sim (x_1, \ldots, \hat{x}_i, \ldots, x_k, t_i, \ldots, \hat{t}_i, \ldots, t_k)$$
 if $t_i = * \in I/I$.

The map c of Lemma 2.1 is the composite

$$M_m(\partial I^m) \to M_m(T^m(I/\dot{I})) \to F_{m-1},$$

where the second map uses the equivalence relation (2.3) to ignore the basepoint in at least one component. The required homeomorphism from the mapping cone of c to F_m is a quotient of the homeomorphism in (2.2) from the mapping cone of k to $M_m((I/\dot{I})^{\times m})$. \Box

Now we return to the proof of Theorem 1.3. Assume by induction that the theorem has been proved for n-1. Note that $\mathcal{F}_{p(n-1)+1} \to \mathcal{F}_{pn-1}$ is an equivalence. Localizing Lemma 2.1 yields a map

$$M_{pn}(\partial I^{pn})_p \to \mathcal{F}_{pn-1} \simeq S_p^1 \times A_{n-1},$$

and, since $H^1(M_{pn}(\partial I^{pn})_p; \mathbf{Z}_p) = 0$, the map is of the form $* \times h$. Let Y denote the mapping cone of h. The map of cofibrations

shows that $H_*Y \to H_*\mathcal{F}_{pn}$ is injective with image spanned by monomials of weight divisible by p. There is a map of fibrations

The map of total spaces induces an isomorphism in mod p homology, and, since \mathcal{F}_{pn+1} is $H\mathbf{F}_{p*}$ -local, this map is an $H\mathbf{F}_{p*}$ -localization, and so there is an equivalence of fibrations

extending the induction, and completing the proof of Theorem 1.3. \Box

References

- [Bo] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133– 150.
- [BG] E. H. Brown and S. Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology 12 (1973), 283-295.
- [CLM] F. R. Cohen, T. J. Lada and J. P. May, The homology of iterated loop spaces, Lecture Notes in Math., vol. 533, Springer- Verlag, 1976.
- [CMT] F. R. Cohen, J. P. May and L. Taylor, $K(\mathbf{Z}, 0)$ and $K(\mathbf{Z}_2, 0)$ as Thom spectra, Illinois J. Math. 25 (1981), 99-106.
- [C1] R. L. Cohen, Immersions of manifolds, Ann. of Math. 122 (1985), 237-328.

1304 F. R. COHEN, D. M. DAVIS, P. G. GOERSS AND M. E. MAHOWALD

[C2] _____, The geometry of $\Omega^2 S^3$ and braid orientations, Invent. Math. 54 (1979), 53-67.

- [DGM] D. M. Davis, S. Gitler and M. Mahowald, The stable geometric dimension of vector bundles over real projective spaces, Trans. Amer. Math. Soc. 268 (1981), 39-61.
- [Ka] R. M. Kane, Operations in connective K-theory, Mem. Amer. Math. Soc. 254 (1981).
- [M1] M. Mahowald, A new infinite family in π_*^3 , Topology 16 (1977), 249–256.
- [M2] ____, bo-resolutions, Pacific J. Math. 92 (1981), 365-383.
- [M3] ____, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979), 549-559.
- [May] J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math., vol. 271, Springer-Verlag, 1972.
- [Mil] R. J. Milgram, Iterated loop spaces, Ann. of Math. 84 (1966), 386-403.
- [Sh] D. H. Shimamoto, An integral version of the Brown-Gitler spectrum, Trans. Amer. Math. Soc. 283 (1984), 383-421.

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PENNSYLVANIA 18015

DEPARTMENT OF MATHEMATICS, WELLESLEY COLLEGE, WELLESLEY, MASSACHU-SETTS 02181

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201