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INTEGRAL BROWN-GITLER SPECTRA

FRED R. COHEN, DONALD M. DAVIS, PAUL G. GOERSS

AND MARK E. MAHOWALD

(Communicated by Haynes R. Miller)

ABSTRACT. A Thorn spectrum model for integral Brown-Gitler spectra is

established and shown to have a multiplicative property. This clarifies certain

aspects of an earlier application to splitting bo A bo.

1. Statement of results. Brown-Gitler spectra have had many important ap-

plications in homotopy theory, most notably in [Ml and Cl]. They were originally

constructed in [BG] by a complicated Postnikov argument, but a Thom spectrum

model suggested in [Ml] and established to be correct in [C2] made them more

down-to-earth.

Integral Brown-Gitler spectra at the prime 2 were introduced in [M2], where

they were useful in a splitting of bo A bo. A Thom spectrum model was suggested

there, and an expanded account, including both Thom spectrum and Postnikov

models, was presented in [Sh]. The odd-primary version of the Thom space model

was discussed in [Ka]. In none of these is the base space for these Thom spectra

explicitly defined. The purpose of this paper is to clarify the Thom spectrum model

of integral Brown-Gitler spectra.

Recall that there is an isomorphism of Hopf algebras

(1.1) ¿¿»(n253) « E\xf j > 0] ® Fp'y¡: j > 1]    if p odd

with \xj\ = 2p3 — 1 and \yj\ = 2p3 — 2. The only modification required for p = 2 is

x2 = yj+i- All homology groups have coefficients in the field Fp with p elements,

unless indicated otherwise. Define a weight on the monomials in ¿¿«(n253) by

wt(xj) = wt(yj) = p3,        wt(ab) = wt(o) + wt(6).

The space Q2S3 admits an increasing filtration by spaces F„n253, due to May and

Milgram [May, Mil], such that Ht,(Fn02S3) C Hm(Q2S3) is the span of monomials

of weight < n [CLM, p. 239].

Let S3 (3) denote the 3-connected cover of S3. Then there is a homotopy fibration

n253(3)^n2s3^sx.

n253(3) was called W in [DGM and M2]. Using the multiplication on Ü2S3, one

easily deduces U2S3 ~ S1 x Q2S3(3), and so ¿í,(n253(3)) C ¿L,(fi2S3) is the span
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of monomials of weight divisible by p. The filtration on Q2S3 induces a filtration

on¿/,(f¡2S3(3))by

FnH,n2s3(3) = H*(Fnn2s3)nH*(n2s3(3)),

the span of monomials of weight < n and divisible by p. In [M2] for p = 2 and

[Ka] for odd p, it was asserted without proof that FnH*Q2S3(3) is induced by an

actual filtration of the space fi2S3(3). This does not follow for general reasons,

but we shall show that it can be achieved after localization with respect to mod p

homology.

We denote by Xp the Bousfield localization [Bo] of the space A with respect to

the homology theory ¿¿»(—;FP) = ¿¿Fp». For a fixed prime p, let 7n = (Fn02S3)p.

There are product maps

*m X fn       ► fm+n

induced by the corresponding maps for the filtration spaces and the fact that local-

ization preserves finite products [Bo, 12.5]. Define An by the homotopy fibration

sequence

(1-2) An —► 7pn+l —* Sp,

where the second map is the localization of the composite

Fpn+in2s3^n2s3^s1.

It follows easily from the definitions and [Bo, 12.7] that the space An is ¿LFp*-local.

Most of our effort is directed toward the following result, which is proved in §2.

THEOREM 1.3. The fiber sequence (1.2) is equivalent to a product fibration.

Indeed, there is a map An —► 7pn and a commutative diagram of fibrations

An * An

Sp  X An ►   ¿>p  X Jpn — ?1 X fpn *    *pn + l

Pi

Cl _ Cl
Öp -=^=^=^= Öp

Then H*(An) « Fpn¿/*(íí2S3(3)), the span of monomials ofweightpi withi < n.

which is an equivalence on total spaces and on fibers.

pn1

REMARK. That H*An is as claimed is not immediate from (1.2) and the Serre

spectral sequence, since it is not clear a priori that the fibration of (1.2) is orientable.

For example, the fibration 7pk —* Sp is not orientable. Our Theorem 1.3 establishes

the orientability in (1.2) indirectly.

In [M3], Mahowald constructed a stable spherical fibration f over Q25p such

that

(i)  the Thom spectrum T(£) is equivalent to the mod p Eilenberg-Mac Lane

spectrum HZ/p,

(ii)  the  Thom  spectrum  T(f | fi353(3)p)   is  equivalent  to  the  p-complete

Eilenberg-Mac Lane spectrum ¿LZp, and
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(iii)  the Thom spectrum T(£ | Fnfl2S3) is equivalent to the nth mod p Brown-

Gitler spectrum B(n).

Expanded accounts appear in [Ka and CMT],

We define ¿?i(n), the nth integral Brown-Gitler spectrum at p, to be the Thom

spectrum T(£ | An), using the commutative diagram

An ►   Jpn+l

(1.4) in[

n2s3(3)p-► n253.

Thomifying the composites

À      v  A * T      v T T 7" 4
^m X /in ► ̂ "Pm X y"pn      ► Jpm+pn      ' ¿pm+pn + l      ' -™m+ni

where the last map splits the equivalence of 1.3, yields pairings ¿?i(m) A ¿?i(n) —►

Bi (m + n). These pairings played a crucial role in the application to splitting bo Abo

in [DGM, Ka and M2]. The clarification of their existence is a major reason for

the care in this work.

It is clear from 1.3 that T(i„):  Bi(n) —► H7Ç induces a monomorphism in

homology. Recall Milnor's description

¿¿.(¿¿Zp = E{x(r3): j > 1] ® Fp[X(^): j > 1],

where |tj-| = 2p3 — 1, |£y| = 2p3 — 2, and x denotes the canonical antiautomorphism

of the dual of the mod p Steenrod algebra A. The usual modification t2 = £i+i

applies when p = 2. We define a weight by

wt(x(r>-)) = wt(x(&)) - P>\        wt(afc) = wt(o) + wt(6).

Note that all monomials have weight divisible by p. The relationship between these

classes and those in (1.1) under the Thom isomorphism was discussed in [CMT].

The first two parts of the following theorem, which states the basic properties

of integral Brown-Gitler spectra, now follow immediately from Theorem 1.3.

THEOREM 1.5.   For n > 0, there is a p-complete spectrum ¿?i(n) and a map

Bi(n)±HZ;

such that

(i)  g» sends H,(Bi(n)) isomorphically onto the span of monomials of weight

<pn;

(ii)   there are pairings

Bi (m) A Bi (n) -> Bx (m + n)

whose homology homomorphism is compatible with the multiplication in

H.(Hz;y,
(iii) for any CW complex X,

g,: Bi(n)t(X) ^ Ht(X;Z;)

is surjective if i < 2p(n + 1) — 1.
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Part (iii) is not easily proved from our perspective, but does follow from a

straightforward adaptation of the proof of [Sh, 5.1], which was given only for

p = 2. This adaptation requires a map from Bi(n) into the mod p Brown-

Gitler spectrum B(pn + 1) inducing the obvious inclusion in homology. Such a

map follows immediately from the definitions and (1.4). The argument of [Sh]

then allows us to deduce the surjectivity of ¿?i(n)*(A) —► ¿¿*(A; Zp) from that of

B(pn + l).(X)-*H*(X;Fp).
Many readers may be more familiar with the cohomology criterion

H*(Bi(n))^A/A(ß,XPl- i>n).

This is easily seen to be dual to (i) above. We also remark that our indexing differs

from that of [Sh and Ka], who would call our spectrum Bi (pn + 1). We thank Don

Shimamoto for helpful comments.

2. Proof of Theorem 1.3. We begin by showing that the inclusion Fm-i02S3

—» FmU2S3 may be considered as the inclusion into a mapping cone. Let Em denote

the symmetric group on m letters, and F(K2,m) the space of m-tuples of distinct

points in R2. If A is a pointed Sm-space, we define

Mm(X) = F(R2,m) xEm A/F(R2,m) xEm *.

Let I denote the unit interval, I its boundary, and dlm the boundary of ¿m.

LEMMA 2.1.   Let Fm = Fm02S3.  There is a cofibration sequence

Mm(dlm) ¿> Fm-i-+Fm.

REMARK. Extending this cofibration shows that Y,Mm(dIm) ~ Fm/Fm-i. In

particular, H*(Mm(dIm)) is clear from the cofibration.

PROOF. Let Tm(I/I) denote the fat wedge, consisting of points in the m-fold

Cartesian product having at least one component the basepoint. Viewing ¿m as

the cone C(dlm) yields a Em-equivariant cofibration

dIm ^ymg/jj^ (¿/¿)xm,

and hence a cofibration

(2.2) Mm(dlm) £ Mm(Tm(I/í)) - Mm((I/Í)xm).

Recall from [May] that

Fm=(\J Mfc((¿/¿)xfc))/~,

where, letting " denote omission,

(2.3) (xi,...,xk,ti,...,tk) ~ (xi,...,xl,...,xk,tt,...,il,...,tk) if ¿z = * G I/I.

The map c of Lemma 2.1 is the composite

Mm(dlm) -» Mm(Tm(I/i)) - Fm_i,

where the second map uses the equivalence relation (2.3) to ignore the basepoint

in at least one component. The required homeomorphism from the mapping cone
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of c to Fm is a quotient of the homeomorphism in (2.2) from the mapping cone of

fctoMm((¿/¿)xm).      D

Now we return to the proof of Theorem 1.3. Assume by induction that the

theorem has been proved for n— 1. Note that ^(n_i)+i —► 7pn-i is an equivalence.

Localizing Lemma 2.1 yields a map

Mpn(dlpn)p -> Jpn_! ~ Sp1 xAn-l,

and, since H1(MPn(dIpn)p; Zp) = 0, the map is of the form * x h. Let Y denote

the mapping cone of h. The map of cofibrations

MPn(dIpn)p  ——-»  An-i   -—->    Y    -►  7pn/7pn-l

II I       4 II
Mpn\(jl      ¡p   ~       —*   Jpn—1 *   Jpn *   *pn/Jpn—1

shows that H*Y —► Ht7pn is injective with image spanned by monomials of weight

divisible by p. There is a map of fibrations

Y —♦ An

I  w I
¿)p  X J                    ►   Op  X Jpn = Ji  X Jpn ►   fpn+1

Pi

Ol _ Clop -_ Dp.

The map of total spaces induces an isomorphism in mod p homology, and, since

7Pn+i is ¿¿Fp»-local, this map is an ¿¿Fp*-localization, and so there is an equiva-

lence of fibrations
ip ►     An

I i
Sp X Yp ►   7pn-\-i

ol -      ol
°p -     öp )

extending the induction, and completing the proof of Theorem 1.3.    D
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