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ABSTRACT. Let E, F be Z,-fields of C M-type such that E/F is an extension
of degree p. Let L, the normal closure of E/F, be such that Gal(L/F) has a
normal subgroup of order p. Denote the fixed field of this group by K. We
prove a Kida type formula which describes the minus part of the Iwasawa
lambda invariant of £ in terms of the lambda invariants of F and K.

1. Introduction. Let p be an odd prime. Let Q,, be the unique cyclic extension
of degree p™ contained in the cyclotomic field of p"*!th roots of unity and Qe =
Unr>0 Qn- A Z,-field is the composite of Qo with a finite extension of Q. A Z,-
field F of CM-type is a totally imaginary Z,-field which is a quadratic extension
of a totally real Z,-field F*. Let A denote the subgroup of the p-class group of
F consisting of classes ¢ such that ¢/ = ¢~!, J denoting complex conjugation.

A well-known conjecture of Iwasawa on the vanishing of the u-invariant implies
that Az = (Q,/Z,)*r for some nonnegative integer A, where Q,, Z, denote the
field of p-adic numbers and the ring of p-adic integers, respectively. Our object, in
this paper, is to prove the following generalization of Kida’s Theorem [K].

THEOREM. Let E, F be Z,-fields of CM-type such that E/F is an extension of
degree p. Let L, the normal closure of E/F, be such that Gal(L/F) has a normal
subgroup of order p. Denote the fized field of this group by K. Then up = 0 implies
pp=pg =0, and

de=an+ 2l o= piog)
E-7FUIK:F)K ’
where t is the number of non-p-primes of K+ that ramify in Lt and split in K,
and 6 18 1 or 0 according as K does or does not contain the pth roots of unity.

We give two proofs of this theorem, one arithmetic-algebraic and the other an-
alytic. The first proof is based on an analysis of the action of Gal(L/F) on the
p-elementary subgroup of A7 . It uses some facts proved in [GM]. The analytic
proof uses relations between nonabelian p-adic L-functions. As in [S], the critical
fact used in this proof is a relation, due to Iwasawa, between p-adic L-functions
and Iwasawa invariants.

Kida’s theorem is the analogue of a formula of Deuring and Safarevic, a special
case of which relates the Hasse-Witt invariants of the function fields of a cyclic
extension of degree p such that the field of constants k is an algebraically closed
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field of characteristic p. In this case, Riick [R] has proved the corresponding gener-
alization. His proof is analytic. Our arithmetic-algebraic proof remains valid in the
function field case and, in fact, it holds also in the truly analogous situation when
k is the Z,-extension of a finite field. Using some facts from [DM], the reader can
easily supply the details.

2. The arithmetic algebraic proof. By a theorem of Iwasawa [I], ux = 0
implies 47 = 0. Thus, the p-elementary subgroup of A7 is finite of rank A7 . Since
the kernels of the conorm maps Ay — Ag, Az — A] are finite, it follows that the
p-elementary subgroups of A, A are also finite, i.e. up =0, uz = 0.

The assumption that Gal(L/K) is a normal subgroup of order p of the Galois
group of the normal closure L/F of E/F implies that Gal(L/F) is a semidirect
product of Gal(L/K) and Gal(L/FE), the latter is a cyclic group of order d dividing
p—1. Let G = Gal(L/K) = {(0), Gal(L/E) = (r) and ror~! = ¢". Let X, denote
the p-elementary subgroup of A;. For:=1,2,...,p—1, p, let

(1) Xi={cce X, 19" = 1}.
We have the descending chain of 7-invariant subspaces
XL=XpDX_1 O---DXDX; DX0=(1).

Denoting by F, the finite field with p elements, we recall the following facts from
[GM].

Ag +t—=46, ift>0,

Axs ift =0,

Ak ift >0,

Ag — 6, ift=0.

dimpp X1 = {
(2)
dimp (X,/Xp—1) = {

For the divisible module A}, we have
(3) AL =AY @A) @ A,

where A, denotes the trivial G-module Q,/Z,, A, denotes the divisible regular
representation (Qp/Z,)(z]/zP — 1, and Ap_; denotes the divisible faithful represen-
tation (Qp/Zp)[z]/zP~ + --- + z + 1, for uniquely determined integers ay, a,_1,
ap.

We separate the ramified and the unramified cases.

L/K ramified. As shown in [GM], in this case, H~}(G, A7) =1, H™1(G,A;) =
Z/pZ. Therefore, restricting the decomposition (3) to X, we have

0 () ()

Using (2), it follows that

dimpp(Xi/X,-_l)=ap_1+ap=/\,_{+t—6, 1=1,2,...,p,
dimp, (Xp/Xp-1) = ap = M.
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To evaluate the order of X, the p-elementary subgroup of Ag, we observe that
(d,p) = 1 implies that it is injected in X and can be identified with the subgroup

X <LT) of X, consisting of classes which are invariant under 7. We consider the map
Xi/Xi—l_'Xla i=1y2a~-~,p—11
defined by

_o,)i—l

T=zX;_, — z( =y.

By (2), this is an isomorphism of groups. Moreover

T =T=7 & (7)1 = -

o If(l—a)"—lr—‘ — (x(l—a)‘—‘)r—‘
o (1= — (z(l—o)“‘)f“

o (z1-9) ) 2 (g-e) Tyt
ey =y

ey =y

Thus, the 7-invariant elements correspond to the eigenspace of X for the eigenvalue

r1=*. Also, (1—0)P~! maps X,/X,—1 onto Xk injected in X, and the 7-invariant
elements of Ay are precisely the elements of Az. Considering that d is the order
of r modulo p and dimp, X; =t + A — §, we have, in this ramified case,

A=A+ dlmeXl——)\F (/\K +7—6).

d d

L/K unramified. As shown in [GM], in this case H*(G, A7) = 1, H(G, Ap-1) =
1. Therefore, ap—; = 0 in the decomposition (3). Thus, restricting to X, we have

~ (Folal\* Fiz] \*
%) XL‘(l—z) *\a=zr/) -
Using (2), it follows that

dimpp(Xi/Xi_1)=a,,=/\;(—6, i=2,...,p.
dimpp X1 =a; +ap = /\}_{
We consider the isomorphisms
Xi/Xio1— X278, i=2,3,...,p,
induced by _
T=zX,_ — z(l_”)'_l.

As in the ramified case, one can show that the r-invariant elements correspond to
the eigenspace for the eigenvalue r!~*. Further the space of 7-invariant elements of
X, has dimension A.. Therefore, A, the dimension of the 7-invariant elements of
Xp is given by

Ap =5+ 2= - P11 _s).

This completes the arithmetic-algebraic proof of the theorem.
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3. The analytic proof. This proof will involve a combination of the techniques
of Riick [R] and Sinnott [S].

First we descend to the finite level. There exist finite number fields Fy, Eq, Ko,
Lo such that L = Ly - Qoo, F = Fy - Qoo, Gal(L/F) = Gal(Ly/ Fp), etc.

Let xk denote the regular character of Gal(Lo/Kp) minus the trivial character
of that group. Let x g be defined similarly for Gal(Lo/Ep) and xr for Gal(Ko/Fp).
Let Xg, Xk be the characters of Gal(Lo/Fp) induced from xg, xx and Xy the
character of Gal(Lo/Fy) deduced from xr in the obvious way. Then Riick [R]
proves

(6) d-Xg=d-Xp+(d—1)Xk-

We will use Sinnott’s method (and notation) to deduce from (6) a relation among
p-adic L-functions and, consequently, a relation on A-invariants. Let S be the set
of places (in any appropriate field) which ramify in Lo/F; together with all places
over p. Now (6) gives the following relation among complex L-functions with Euler
factors at S omitted.

II  LsGew.ES)¥= ]  Ls(s, o0, F)
$€Gal(Lo/Eo)” YeGal(Ko/Fo)"
Y#L P#1
IT  Ls(spu, KF)*
$E€Gal(Lo/Ko)
Y#1

where p = €8 for ¢ the odd quadratic character of Fo/Fy, Lo/L{, etc. and 6 the
Teichmiiller character of Fyf (¢,)/Fy' .
Using the standard properties of complex L-functions we can rewrite this equa-
tion as
LS(S’P, L(-)F)d _ LS(Sa P,Kg)d LS(sa P, La_)d_l
LS(S, ps E(-)'-)d B LS(Sa Py F(;-)d LS(Sa Ps Kg-)d_l

which simplifies to

LS(37 P L(-;_)
LS (Sa P, KJ-)

: LS(Svpv FJ)d = LS(sa p7EJ)d'

This yields

H LS(SaM),KJ) -Ls(s,p, F(;’-)d =L3(3,p,E3-)d.
YEGal(Lo/Ko)
P#1
Let is(x, k,T) be the Iwasawa power series defined by the interpolation property
Ls(x, k,6' 7" = 1) = Ls(1 =, x07", k)

where « generates Auty,,)(k(sp)) viewed as a subgroup of 1+ pZy.

Our basic equation holds for Lg(s, x, k) replaced by Lg(x, k, T).
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Denoting (as in [S]) the A-invariant of the power series Lg(x, k, T) by As(x, k),
we obtain

Yo As(pv,KF) +d-As(p, Fe) =d - As(p, EF).

$€Gal(Lo/Ko)
Y#1

By Proposition 2.1 in Sinnott [S] and the fact that Gal(Lo/Kp) has order p, we
have

-1

It remains now to relate each Ag(p,kd) to the corresponding A;. But A\; =
As/(p,kd) + 6(k) [S, Proposition 3.1] where S’ is the set of places of k§ which
ramify in ko - Qoo/kg . The required relation is given [S, Lemma 2.1] by

(8) s k) =25 + 5 g @) - s(k) tork=FEK
P

where the sum is over all places & in S/k which are not ramified in k/kJ such
that 2 is split in ko/kJ, g() is the number of places of k* lying over £, and
6(k) = 1,0 as k contains a pth-root of unity or not.

In light of (7) and (8), the theorem will follow if we can show that

— 1 (K) (F) (E) -1
=Y @)+ ) e -y ey =Bt
P P P

This equality can be verified by considering the contribution to both members of
each non-p-prime % of Fy which is ramified in Lo/F;. This is achieved by a
nontrivial but routine and somewhat tedious examination of cases depending on
the splitting behavioir of & in Lo/ F(;" . We omit the proof.

4. Remarks. 1. As stated in the Introduction, Kida’s Theorem is an analogue
of a theorem of Deuring and Safarevic. It may also be viewed as a formal analogue
of the Riemann-Hurwitz genus formula.

2. Our theorem generalizes Kida’s Theorem to a class of extensions of degree p.
The restriction to extensions of degree p is not essential. Using induction, it can be
routinely extended (as in [K, Sa, S]) to extensions E/F such that for the normal
closure L, Gal(L/F) is the semidirect product of the normal subgroup Gal(L/K)
of p-power order and the cyclic subgroup Gal(L/FE) of order dividing p — 1.

3. We give an example of the application of our theorem.

Let F = Q(v/—6) and E = Q(v/—6,a) where « is a root of z3 — 11z — 11.
The field Q(e) is a totally real cubic of discriminant 112 - 17 and normal closure
Q(, V17). Therefore K+ = Q(v17), K = Q(vV17,V/-6), L = Q(V17,V=6,q)
and 11 is totally ramified in L/K. Since 3 does not divide the class number of K
and there is a unique prime over 3 in K, the invariant A, Ay are both zero [W].
It is easy to check that t = 1 and § = 0. Hence by the formula of our theorem,
Ag=1land A} =2.
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