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ABSTRACT. In this paper we present two existence results for a large class

of random, nonlinear, multivalued evolution equations defined in a reflexive,

separable Banach space and involving an m-dissipative operator. Applications

to random multivalued parabolic p.d.e.'s are presented. Our work unifies and

extends earlier results of Kampé de Feriet, Gopalsamy and Bharucha-Reid,

Becus and Itoh.

1. Introduction. Many problems in physics, engineering, biology and social

sciences lead to mathematical equations. In these equations, the coefficients and the

other parameters have their origin in experimental data and represent some kind

of average value. Therefore in many instances due to wide variations of the data

or even due to our own ignorance, it is appropriate to abandon the deterministic

model in favor of a stochastic one. This is very nicely exemplified in the books of

Bharucha-Reid [4] and Soong [21].

In this paper we present two existence results for a class of random nonlinear

multivalued evolution equations defined in a reflexive, separable Banach space. This

class of evolution equations models linear and several nonlinear partial differential

equations of parabolic type. So our work unifies and extends earlier works on

random parabolic partial differential equations. In particular, Kampé de Feriet

[12, 13] was the first to study the random heat equation. The randomness entered

in the problem through the initial value data. Later Gopalsamy and Bharucha-Reid

[10] and Becus [2] introduced also randomness in the boundary value and source

terms. Finally Itoh [11], allowed randomness to appear also in the operator, which

instead of the Laplacian, was a general random, single valued, everywhere defined

continuous, accretive operator. Our results cover all the above-mentioned works.

Let (Í2, E) be a measurable space and X a separable Banach space. Through-

out this work we will be using the following notations: P^C)(X) = {A Ç X:

nonempty, closed, (convex)} and Pkc(X) = {A Ç X: nonempty, compact, convex}.

A multifunction F: fi —► Pf(X) is said to be measurable if for every x G X,

w —► d(x,F(w)) = inf{||a; — z\\: z e F(w)} is measurable. By S£ we will denote

the set of integrable selectors of F(-) i.e. Sp = {/ G L1(X): f(uj) G F(lj) p-a.e.}.

Received by the editors August 18, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 60H20.

Key words and phrases, m-dissipative, integral solution, measurable multifunction, measurable

selector, nonlinear semigroup of contractions.

Research supported by N.S.F. Grant D.M.S. 8602313

2 Work done while on leave at the University of Thessaloniki, School of Technology, Mathe-

matics Division, Thessaloniki 54006, Greece.

©1988 American Mathematical Society

0002-9939/88 $1 00 + $.25 per page

293



294 E. P. AVGERINOS AND N. S. PAPAGEORGIOU

This set may be empty. We will say that F(-) is integrably bounded if and only if

u) —► 1^(^)1 = sup{||^|| : z G F(oj)} belongs in L1. It is easy to check that in this

case S p ^ 0.

Let J: X —► 2X' - {0} be the duality map, that is

J(x) = {x*eX*:(x-,x) = \\x\\2 = \\x*\\2}.

Then for (x, y) G X x X we define

(x, y)+ = sup{(y*,x) : y* G J(y)}.

This is called a semi-inner product on X. Consider the initial value problem

x(t) e Ax(t) + f(t), x(0) — xo, where A: X —► 2X is m-dissipative, / G L1(X)

and xo G D(A). A function x: T = [0, b] —► X is an integral solution of the above

equation, if x(-) is continuous, x(0) = xrj and

||z(i) - x||2 < ||x(s) - x||2 + 2 j  (f(r) + y, x(r) - x)+ dr

for each (x, y) G Gr A and 0 < s < t < b. If A is linear, then the family of integral

solutions coincides with that of mild solutions. A strong solution is an integral

inclusion. The converse is not true without additional hypotheses on X, A, f and

xo- It is true, if X = Rn or if X is a Hubert space and -A = dip, ip(-) = proper,

convex, closed function on X. Further results in this direction can be found in

Brezis [5], Barbu [1] and Schechter [20]. Recall that given an m-dissipative operator

A: X —► 2X, it generates a nonlinear semigroup {S(t),t > 0} of contractions on

D(A), through the Crandall-Liggett exponential formula [1]

S(t)x =  lim
n—>oo

Finally if Y, Z are Hausdorff topological spaces, a multifunction G : Y —► 2Z —

{0} is said to be closed if and only if Gr G = {(y, z) G Y x Z: z G G(y)} is closed

in Y x Z.

2. The theorem. Let (0,E,p) be a complete probability space, T — [0,6] a

closed, bounded interval in R+ and X a reflexive, separable Banach space. With

Xw we will denote X with the weak topology. The random multivalued, nonlinear

evolution equation that we will consider is

x(oj, t) G A(oj)x(oj, t) + F(w, t, x(uj, t)),

W x(oj,0) = x0(u).

In the above equation, for every w € f¡, A(u>) : X —> 2X is an m-dissipative

operator, while F(-, -, ■) is a random multivalued perturbation. By a random in-

tegral solution of (*) we understand a stochastic process x: f2 x T —► X with

continuous realizations s.t. for every uj G fi, x(w, •) is an integral solution of

i(w, i) G A(oj)x(oj, t) + f(uj)(t), where /(w)(-) G S¿(aVil(w,.)r

THEOREM 2.1. Assume (1) for every w G Cl, A(uj) : X —* 2X is an m-dissipa-

tive operator that generates a semigroup S(oj)(t) which is compact for t > 0 and

w —> GtA(oj) is measurable from fi into P/(X x X).

t'-*0
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LetF.flxT xX -»■ Pfc (X) be such that

(2) (oj,t,x) —* F(bJ,t,x) is measurable,

(3) for every (u, t) G Q x T, x —► F(u, t, x) is closed in X x Xw,

(4) \F(u,t,x)\ < a(oj,t) a.e., where a(-,-) is jointly measurable and for all uj eil,

a(oj, ■) e L1, and

(5) xo : n —► X is measurable and for all uEÍl, xo(oj) G D(A(ui)).

Then (*) admits a random integral solution.

PROOF. For each u G Q and g G L1(X), consider the following evolution

equation:

{*h x(t)eA(u)x(t)+g(t),        x(0)=xo(oj).

From Benilan [3], we know that (*)w has a unique integral solution. Let H: ilx

LX(X) —* C(T,X) be the map that to each (w, g) G Í2 x LX(X) assigns the unique

integral solution. We will examine the properties of the map H(-, ■). Fix g G L1 (X).

From Lemma 2.1, p. 124 of Barbu [1], we know that H(u, g)(t) = lim„_»oo xn(w, t)

uniformly on T, where xn(oj,t) is the unique solution of the approximate evolution

equation.

(*)„ xn(oj,t)= An(oj)xn(uj,t) + g(t),    xn(oj,0) =x0(oj).

Recall that An(oj)x = n(Fn(uj)x — x), where Fn(u)x = (I — n~1A(uj))~1x and

x e R(I — n~1A(oj)), and so combining hypothesis (1) with Theorem 1 of Menou

[15], we get that u —» An(oj) is measurable. Sow-» xn(oj, t), n > 1, are measurable

=> uj —* H(oj, g) is measurable.

Now fix u e Q. From inequality (2.4), p. 124 of Barbu [1], we get that

g —► H(u>,g) is continuous from L1(X) into C(T,X). So (u,g) —> H(oj,g) is a

Carathéodory function, hence jointly measurable.

Next let R : Q x L1 (X) -* Pfc(L1 (X)) be the multifunction defined by R(u, g) =

^F(u ■ Hiu o)(-))- ^e c^a™ tnat Grß G E x B(LX(X)) (i.e. R(-, ■) is graph measur-

able). To this end, rewrite R(-, ■) as

R[u,g) = {fe L1(X):d(f,SFi^H{^gK.))) = 0}.

From the definition of the distance function we have

dU, ^(W,.,if(w,9)())) = inf{ll/ - h\\i : h G S£(Wi.,ff(W)9)(.))}
-

= inf | £ \\f(t) - h(t)\\ dt:he SF{U>!)H{U^{:))

= f mi{\\f(t)-z\\:zeF(uj,t,H(cj,g)(t))}dt
Jo

d(f(t),F(oj,t,H(oj,g)(t)))dt.

Observe that H(oj,g)(t) = et(H(ui,g)), where et() is the evaluation map at

t e T, which we know is jointly continuous. Also we saw earlier that H(oj, g) is

jointly measurable. Thus (oj,t,g) —► H(u>,g)(t) = et(H(oj,g)) — p(oj,t,g) is mea-

surable and so using hypothesis (2) we deduce that for every x G X, (oj,t,g) —>

d(x,F(u>, t,H(oj, g)(t))) is measurable.   Since the distance function is continuous

-L
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in x, we conclude that (oj,t,g) —> d(f(t),F(oj,t,H(oj,g)(t))) is measurable and

so through Fubini's theorem we get that (oj,g) —* d(f,SF, . H, q\i.)\) is mea-

surable and once again the continuity in / allows us to say that (oj, g, f) —>

d(/> SF(u,-,H(uj,g)())) ~ fc(w' 9, f) is jointly measurable. Then we have:

GrR^{(oj,g,f)eUxL1(X):k(oj,g,f)=0}

e E x B(L\X) x L\X)) = E x B(L1(X)) x B(L1(X)).

Observe that for every u> G fi, R(oj,-): W(u>) -► W(oj), where W(oj)=S^, ,

with B(oj,t) = {x e X: \\x\\ < a(oj,t)}. Note that since X is reflexive, W(oj) is

^-compact in LX(X) (Dunford-Pettis theorem). Then since S(oj)(t) is compact for

t > 0, Theorem 2 of Vrabie [22] tells us that H(oj,W(oj)) is compact in C(T, X). So

if 9n —* 9 in W(w), we may say that H(oj, gn) —► x in C(T,X) and using once more

inequality (2.4), p. 124 in Barbu [1], we get that x — H(ui, g). Then from hypothesis

(3) and Theorem 4.2 of [17] we get that w-limi?(o;,g„) C R(oj,g) => R(oj, ■) is

u.s.c. on W(oj). Hence applying Kakutani-Ky Fan fixed point theorem we get

that L(oj) = {/ G W(oj): f G R(ojJ)} ¿ 0 for all w G ü. Note that GrL =

P"flnxL'(x)[(n x 0) nGrÄ] where L> = {(/l5/2) G Ll(X) x Ll(X): A = f2}.

From Theorem 39.IV.1 of Kuratowski [14] (see also Dellacherie [9], Theorem A,

p. 345—the Arsenin-Novikov theorem) and since Grñ G T,xB(Ll(X))xB(L1(X)),

we get that Gr L G E x B(Ll (X)). Apply the Aumann selection theorem (see Saint-

Beuve [19], Theorem 3) to get h: O —* Ll(X) measurable s.t. h(u) G ¿(w) for all

oj G H. Let x(oj,t) = H(oj,h(ui))(t). Clearly x(-,-) is the desired random integral

solution of (*).    Q.E.D.

We can relax the compactness hypothesis on S(t), t > 0, on the expense of

introducing it on the perturbation F(-,-,-). Furthermore we assume that X is a

separable Hubert space.

THEOREM 2.2. Assume (1) for every uj G ft, —A(u): X —> 2X is maximal

monotone with intD(A(oj)) ^ 0 and oj —► GrA(w) is measurable from Q into

Pf(XxX).
Let F-.QxT xX -> Pfc(X) be such that

(2) (u),t,x) —» F(ui,t,x) is measurable,

(3) for every (oj, t) G fl x T, x —» F(oj, t, x) is closed in X x Xw,

(4) F(oj,t,x) Ç G(oj,t), where G: QxT —> Pkc(X) is measurable and integrably

bounded in t, and

(5) xo-' H —» X is measurable and for all oj G fl, xq(oj) G D(A(oj)).

Then (*) admits a random integral solution.

PROOF. As in the proof of Theorem 2.1 we consider the multifunction R(uj,g)

which is graph measurable. Also for every oj g 0, R(oj, ■): W(oj) —► W(oj) and in

order to apply the Kakutani-Ky Fan fixed point theorem, we need to show that it

is upper semicontinuous on W(oj) = Sq, ., with the weak topology. So let gn —► g

in W(oj). Using the theorem of Castaing [8], we get that since G(-, ■) is compact

valued, weak convergence of sequences coincides with convergence in the weak norm
t' H

\g\w — max{||/t   g(s)ds\\: t,t' G T}. Hence gn -S1 g and so through the theorem

in §4 of Schechter [20], we get that H(oj,gn) -» H(oj,g) in C(T,X).  The rest of

the proof goes as in Theorem 2.1.    Q.E.D.
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3. Applications. (1) Let (fi, E,p) be a complete probability space and W an

open domain in Rn (n > 2) with smooth boundary dW = T. Let r > (n — 2)/n

and consider the following random, nonlinear multivalued initial-boundary value

problem of parabolic type on fi x T x W:

d   '      e X(oj)Ax(oj, t, z)\x(oj, t, z)|r_1 + F(oj, t, z, x(oj, t, z))

(**h x(oj,t,z)=0     onfixTxT,

x(oj,0, z) = xo(oj,z)     on fi x {0} x W.

Here A : fi —► R is measurable, F:QxTxRnxR—> P/C(R) is a closed multi-

function s.t. \F(oj,t,z,x)\ < a(oj,t,z) with a measurable, a(oj, -, ■) G L2(T x W)

and (oj,t,x) —*• SL   t  x,^ measurable on fi x T x L2(W).

Set X = L2(W) and A(oj)x = A(w)Ax|x|r_1 with domain D(A(oj)) = {x G

L2(W): x,|x|r-1 G H0l(W) and &x\x\r-1 G L2(W)}. Then from Benilan [3] we

know that for every oj G fi, A(oj) is m-dissipative while using Corollary 5.1, p. 214

of Pavel [18] (see also Brezis [7]), we can conclude that the semigroup that it

generates is compact for t > 0. Furthermore it is clear that oj —► GrA(oj) is

measurable from fi into Pf(X x X). Finally let F: fi x T x X -* Pfc(X) be

defined by F(oj,t,x) — SF,t,x,,y   From the hypotheses on F(-,-,-,■) we can

check easily that F satisfies assumptions (2), (3), and (4) of Theorem 2.1. Setting

xo(oj) — x0(oj, ■) G L2(W) we can rewrite (**)i as follows

,y x(oj, t) G A(oj)x(oj, t) + F(oj, t,x(oj, t)),

x(w,0) = xo(oj).

Applying Theorem 2.1, we deduce that (**)[ (and so (**)i) has a random inte-

gral solution, which is a strong solution since A(oj) is of subdifferential type (see

Example 2).

(2). Let W be an open domain in Rn with smooth boundary and consider the

following problem on fi x T x W:

dx(oj, t, z)      . _.
, G Aß(oj, x(oj, t, z)) + f(oj, t, z, x(oj, t, z)),
1

0eß(oj,x(oj,t,z))     onfixTxT,

x(oj,0, z) = xq(oj, z)     on fi x {0} x W.

Here ß(oj) = dh(oj, ■) = the subdifferential of a Carathéodory integrand h: fi x

R —► R. Also f:UxTxRnxR—>Äis measurable in (oj,t,z), continuous in

x and f(oj,t,z,x) G K(oj,t), where K: Q xT ^ Pfc(R) is measurable and for all

weil, \K(oj,-)\eL%. Let <p: fi x H~l(W) -* RU {+00} be defined by

r ¡wh(oj,x(z))dz,    xeL\w),h(oj,x(-))eL\w),
ip(oj,x) --{

+ 00     otherwise.

Recall that A is the canonical isomorphism between Hq(W) and H  1(W) =

[Ho(W)}* and apply Proposition 2.10, p. 67, of Barbu [1] to rewrite (**)2 as follows:

x(oj,t) G -d<p(oj,x(oj,t)) + F(oj,t,x(oj,t)),

x(oj,0) = x0(oj)(-)eH-1(W),
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where F is the Nemitsky operator associated with /. Then applying Theorem 2.2,

we deduce that (**)2 being of subdifferential type has a random strong solution

(which is in fact unique since F is single valued)

x: fix T^H~l(W) s.t. Vt(dx(oj,t)/dt) G L2(T,H~1(W)).

Clearly then x(oj,t,z) = x(oj,t)(z) is the desired distributional random solution of

(**)2.

Note that if h(oj,x) = A(u>)x|x|r_1 we recover example (1). That is why the

solution in that example is in fact strong. Also depending on the form of h(oj,x)

we can have various interesting problems in mathematical physics (free boundary

problems, flow through homogeneous porous medium etc.)

(3). Let fi, VF be as before. Consider the problem

(**)

dx(oj,t,z)       .   , .      ., . ..
—-= Ax(oj, t, z) + f(oj, t, z, x(oj, t, z)),

3 x(oj,t,z)=0     onfixTxT,

x(oj,0, z) = Xo(oj, z)     on fi x {0} x W.

Here f:QxTxRnxR—> i? is measurable in (oj,t,z), continuous in x and

\f(oj, t, z,x)\ < a(oj, t, z) with a(-, -, ■) measurable, a(oj, -, ■) G L2(T x W). It is well

known that if A = A with D(A) = H¿(W) n H2(W), then A(-) is dissipative on

L2(W). Furthermore from the existence theory of partial differential equations we

know that R(I — A) = L2(W). So A is an m-dissipative operator. In addition from

Brezis [6] we know that -A = d<p where <p(x) = \ Jw |Vx(2)|2 dz if x(-) G H¿(ü),

and +00 otherwise. Then system (**)ß takes the form:

(**)'3

x(oj, t) — Ax(oj, t) + F(oj, t, x(oj, t)),

x0(oj,0) =x0(oj),

where F(oj,t,x) is the Nemitsky operator corresponding to / and xo(oj)(-) =

xq(oj,-) e L2(W). Recalling that A generates a linear contractions semigroup

S(t) : L2(W) —>■ L2(W) which is compact for t > 0, we conclude using Theorem 2.1,

that (**)3 has a random strong solution (it is strong because A = dp) x: fi x T —►

L2(W) s.t. yft(dx(oj,t)/dt) e L2(T,L2(W)) and x(oj)(-) G L2(T,H¿(W)). Then
x(oj,t)(-) is the desired random distributional solution of (**)3- This example il-

lustrates that our work produces as special cases the existence results of Kampé de

Feriet [12, 13], Gopalsamy and Bharucha-Reid [10] and Becus [2].

(4). If AT is a Hilbert space, K: fi —» Pkc(X) is measurable and 6K^)(-) is

the indicator function of K(oj) i.e. 8k(u)(x) — 0 if x G K(oj), +oo otherwise, we

consider the following random multivalued equation

x(oj,t) ed6K<u)(x(oj,t)) +f(oj,t,x(oj,t)),
(**)4

x(oj,0) — Xo(oj) e X,

where /: UxTxX —* X is measurable in (oj,t), continuous in x and \\f(oJ,t,x)\\ <

a(oj,t) a.e. with a(-, ■) measurable and a(oj, ■) e L1. Recall that dèK(u) — NK(u) =

cone of normals to K(oj). Hence in equation (**)4 we recognize the "sweeping pro-

cess problem" considered by Moreau [16], that has applications in theoretical me-

chanics. If A(oj) — dÔK(u>)(') then A(u) is maximal monotone and by Corollary 5.1,
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p. 214 of Pavel [18] generates a compact nonlinear semigroup.   So Theorem 2.2

guarantees the existence of a random strong solution for (**)4.
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