WEAK AMENABILITY OF BANACH ALGEBRAS GENERATED BY SOME ANALYTIC SEMIGROUPS

JOŚE E. GALÉ

(Communicated by John B. Conway)

ABSTRACT. In this paper it is shown that if A is a Banach algebra generated by an analytic semigroup $(a^t)_{\operatorname{Re} t>0}$ such that $||a^{1+iy}|| = O(|y|^{\rho})$ $(y \in \mathbb{R})$, where $0 \leq \rho < 1/2$, then A is weakly amenable, that is, each continuous derivation from A to a commutative A-module is null.

1. Introduction. Let A be a commutative Banach algebra and X a commutative Banach A-module (this means that X is a commutative A-module with respect to the operation $(a, x) \in A \times X \mapsto a \cdot x \in X$ and there exists k > 0 such that $||a \cdot x|| \leq k||a|| ||x||$ for every $a \in A, x \in X$), or Banach A-module for short. A linear mapping $D: A \to X$ is a derivation if $D(ab) = a \cdot Db + b \cdot Da$ $(a, b \in A)$. In this paper we consider only continuous derivations.

Put $H = \{t \in \mathbb{C} : \text{Re } t > 0\}$. An analytic semigroup $(a^t)_{\text{Re } t > 0}$ in A is an analytic mapping $t \in H \mapsto a^t \in A$ such that $a^{t+s} = a^t \cdot a^s$ $(t, s, \in H)$. It is interesting to know how restrictions on the growth of $||a^t||$ near to the boundary of H affect the structure of A. This question can be seen detailed in [6, Chapter 5], where three different types of growth conditions on $||a^t||$ are considered. In [4], it is shown that if the semigroup $(a^t)_{\text{Re } t>0}$ satisfies the condition

$$\int_{-\infty}^{+\infty} \frac{\log^+ \|a^{1+iy}\|}{1+y^2} \, dy < +\infty$$

(one of those considered in [6]) then the Banach subalgebra B of A generated by $(a^t)_{\operatorname{Re} t>0}$ is regular. Further, B is also tauberian, as is noticed in [2]. Here, we consider a semigroup $(a^t)_{\operatorname{Re} t>0}$ such that $||a^{1+iy}|| = O(|y|^{\rho}) (|y| \to +\infty)$ for some $0 \leq \rho < 1/2$ and, under this stronger assumption, we show that B is weakly amenable, i.e. for every Banach B-module X each continuous derivation $D: B \to X$ is null. The proof of this fact consists in extending the derivation D to another one $\tilde{D}: \operatorname{Mul}(\mathscr{A}) \to Z$ where $\operatorname{Mul}(\mathscr{A})$ is the multiplier Banach algebra of a certain Banach algebra \mathscr{A} and Z is a $\operatorname{Mul}(\mathscr{A})$ -module. The procedure followed here to obtain \mathscr{A} from B was introduced in [3] in relation with the problem of the existence of topologically simple Banach algebras. This method permits to construct the elements " a^{iy} " $(y \in \mathbf{R})$ as multipliers of \mathscr{A} to conclude, by application of a result of [1], that D = 0.

Now we recall standard notions and facts. Let A be a commutative Banach algebra and let X be a Banach A-module. Put $A^{\perp} = \{b \in A : ab = 0 \text{ for all } b \in A \}$

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors June 1, 1987 and, in revised form, October 9, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46J35.

Key words and phrases. Banach algebra, Weak amenability, analytic semigroup.

This research has been supported by the Spanish CAICYT Grant number 0804-84.

 $a \in A$ and $X^{\perp} = \{x \in X : ax = 0 \text{ for all } a \in A\}$. The quotient Banach space X/X^{\perp} is an A/A^{\perp} -module with respect to the operation $\bar{a} \cdot \bar{x} = \bar{a} \cdot \bar{x}$ $(a \in A, x \in X, \bar{a} = a + A^{\perp}, \bar{x} = x + X^{\perp})$ since if $a_1 - a_2 \in A^{\perp}$ and $x_1 - x_2 \in X^{\perp}$ then $(a_1x_1 - a_2x_2)b = (a_1 - a_2)bx_1 + a_2(x_1 - x_2)b = 0$ for all $b \in A$. Further, X/X^{\perp} is a Banach A/A^{\perp} -module because

$$\|\overline{a \cdot x}\| \le \|a \cdot x\| = \inf_{z \in X^{\perp}} \|a \cdot x - a \cdot z\| \le \|a\| \|\overline{x}\|$$

so if $r \in A^{\perp}$, $\|\overline{ax}\| = \|\overline{(a-r) \cdot x}\| \leq \|a-r\| \|\overline{x}\|$ whence $\|\overline{a \cdot x}\| \leq \|\overline{a}\| \|\overline{x}\|$. Suppose now that $[AA]^- = A$. Let $D: A \to X$ be a continuous derivation and define $D^{\perp}: A/A^{\perp} \to X/X^{\perp}$ by $D^{\perp}(\overline{a}) = \overline{D(a)}$ $(a \in A)$. D^{\perp} is well defined: if $r \in A^{\perp}$ and $a, b \in A$ then $D(r) \cdot ab = -r \cdot D(ab) = -r(a \cdot Db + b \cdot Da) = 0$. Moreover, D^{\perp} is a derivation and

$$\|D^{\perp}(\bar{a})\| = \inf_{r \in A^{\perp}} \|D^{\perp}(\overline{a-r})\| = \inf_{r \in A^{\perp}} \|\overline{D(a-r)}\| \le \|D\| \inf_{r \in A^{\perp}} \|a-r\| = \|D\| \|\bar{a}\|$$

which implies that D^{\perp} is continuous.

Let \mathscr{A} be a commutative Banach algebra and $(e_n)_{n\geq 1}$ a bounded approximate identity in \mathscr{A} , i.e. $||e_n|| \leq k' \ (n \geq 1)$ for some $k' \geq 1$ and $ae_n \xrightarrow{n} a$ for every $a \in \mathscr{A}$. For a Banach \mathscr{A} -module X we denote by $\operatorname{Hom}(\mathscr{A}; X)$ the set of mappings $T: \mathscr{A} \to X$ such that $T(ab) = a \cdot Tb \ (a, b \in \mathscr{A})$. In fact, each T is linear and bounded [5] and $\operatorname{Hom}(\mathscr{A}; X)$ is a Banach space under the usual operations and norm $||T|| := \sup_{||a|| \leq 1} ||Ta||$. Assume $\mathscr{A} \cdot X = X$. In that case, if $x \in X$ and $e_n x = 0 \ (n \geq 1)$ then x = 0 and the mapping $x \in X \mapsto T_x \in \operatorname{Hom}(\mathscr{A}, X)$ where $T_x(a) = a \cdot x \ (a \in \mathscr{A})$, is an injection. Also, for $\mathscr{A} \cdot X = X$, X is a Banach $\operatorname{Mul}(\mathscr{A})$ -module with respect to the operation $(T, x) \in \operatorname{Mul}(\mathscr{A}) \times X \mapsto T \cdot x = Ta \cdot y \in X$, where $a \in \mathscr{A}, y \in X$ and $x = a \cdot y$ (see [3, p. 96]). Note that $\operatorname{Hom}(\mathscr{A}; \mathscr{A}) = \operatorname{Mul}(\mathscr{A})$.

PROPOSITION (1.1). Let \mathscr{A} be as above, let Y be a Banach \mathscr{A} -module and let $D: \mathscr{A} \to Y$ be a derivation. Then there exists a (unique) derivation $\tilde{D}: \operatorname{Mul}(\mathscr{A}) \to \operatorname{Hom}(\mathscr{A}, Y)$ such that $\tilde{D}(a) = D(a)$ for every $a \in \mathscr{A}$.

PROOF. Since \mathscr{A} possesses a bounded approximate identity we have that $\mathscr{A} \cdot \mathscr{A} = \mathscr{A}$ and $\mathscr{A} \cdot Y$ is a closed subspace of Y, by Cohen's Theorem [6]. Put $X = \mathscr{A} Y$. Then $\mathscr{A} X = \mathscr{A} \mathscr{A} Y = \mathscr{A} Y = X$, $D(\mathscr{A}) = D(\mathscr{A} \mathscr{A}) \subset \mathscr{A} Y + \mathscr{A} Y = X$ and we can define \tilde{D} : $\operatorname{Mul}(\mathscr{A}) \to \operatorname{Hom}(\mathscr{A}, Y)$ as $\tilde{D}(T)(a) = D(Ta) - T \cdot Da$ $(a \in \mathscr{A}, T \in \operatorname{Mul}(\mathscr{A}))$. It is easy to verify that \tilde{D} is a derivation such that $\tilde{D}(a) = D(a)$ for every $a \in \mathscr{A}$.

2. Semigroups and weak amenability. Let A be a Banach algebra and let $(a^t)_{\operatorname{Re} t>0}$ be an analytic semigroup in A. It is well known that $[a^tA]^- = [a^sA]^ (t,s \in H)$ [6, p. 7]. Throughout this section we suppose that A is generated by $(a^t)_{\operatorname{Re} t>0}$. A consequence of this, when $(a^t)_{\operatorname{Re} t>0}$ is such that $||a^{1+iy}|| = O(|y|^{\rho})$ $(|y| \to +\infty)$ for some $0 \le \rho < 1/2$, is that A is also generated by the subalgebra of all polynomials in a^1 , say P(a) [4, p. 379]. Then $P(a) \subset a^{1/2}A \subset A$ and so $[a^tA]^- = [a^{1/2}A]^- = P(a)^- = A$ ($t \in H$). Without loss of generality we assume $||a^t|| \le 1$ for every $t \ge 1$. Put $a = a^1$.

LEMMA (2.1). Let A be a Banach algebra generated by an analytic semigroup $(a^t)_{\operatorname{Re}t>0}$ and such that $A^{\perp} = (0)$. Let $\omega \colon \mathbf{R} \to \mathbf{R}$ such that $\omega(y) > 0$, $\omega(y_1 + y_2) \leq \omega(y_1) \cdot \omega(y_2)$ and $||a^{1+iy}|| \leq \omega(y) \ (y, y_1, y_2 \in \mathbf{R})$. Then there exists a continuous injection with dense range $A \hookrightarrow \mathscr{A}$ where \mathscr{A} is a Banach algebra with a bounded approximate identity such that $a^{iy}\alpha := \lim_{t \to iy} a^t\alpha$ exists in \mathscr{A} for every $\alpha \in \mathscr{A}$ $(y \in \mathbf{R})$. Moreover $(a^{iy})_{y \in \mathbf{R}} \subseteq \operatorname{Mul}(\mathscr{A})$ and $||a^{iy}|| \leq \omega(y) \ (y \in \mathbf{R})$.

PROOF. Put $h(t) = \omega(\operatorname{Im} t)^{-1}$ (Re t > 0). First, note that, by considering $b^t = a^{2t}$ (Re t > 0) and $\bar{\omega}(y) = \omega(2y)$ ($y \in \mathbf{R}$), we can assume that $\sup_{\operatorname{Re} t \ge 0} \|h(t)a^{1+t}\| < +\infty$ since

$$\begin{aligned} \|b^{1+t}\| &= \|a^{2+2t}\| \le \|a^{1+i2 \operatorname{Im} t}\| \, \|a^{1+\operatorname{Re} t}\| \\ &\le \omega(2 \operatorname{Im} t) = \bar{\omega}(\operatorname{Im} t) \quad (\operatorname{Re} t \ge 0). \end{aligned}$$

Now, for $y \in \mathbf{R}$, put $\mathscr{D}_y = \{b \in A : a^{1+iy}b = ac \text{ for some } c \in A\}$. If $b \in \mathscr{D}_y$ then c is unique because $A^{\perp} = (0)$. Define $T_y(b) := c(b \in \mathscr{D}_y)$. Then T_y is a densely defined operator on A since $a \in \mathscr{D}_y$. Moreover, it is routine to verify that T_y is a closed operator. We will write a^{iy} instead of T_y . Observe that a^0 is the identity.

Consider

$$I = \left\{ u \in A \colon u \in \mathscr{D}_{y} \ (y \in \mathbf{R}), \sup_{\operatorname{Re} t \ge 0, |\lambda_{t}| \le h(t)} \|\lambda_{t} a^{t} u\| < +\infty \right\}.$$

I is a nontrivial dense ideal of A because $a \in I$. Put

$$p(u) = \sup_{\operatorname{Re} t \ge 0, |\lambda_t| \le h(t)} \|\lambda_t a^t u\| \qquad (u \in I).$$

The mapping p is a complete norm on I such that $||u|| \leq p(u)$, $p(bu) \leq ||b||p(u)$ $(b \in A, u \in I)$. For $b \in A$, define $q(b) = \sup_{u \in I, p(u) \leq 1} p(bu)$. Then q is an algebra norm on A such that $q(b) \leq ||b||$ $(b \in A)$. Let \mathscr{A} be the q-completion of A. Then \mathscr{A} is generated by $(a^t)_{\operatorname{Re} t>0}$, and

$$q(h(t)a^{t}) = \sup_{\text{Re } s \ge 0, p(u) \le 1} \|\lambda_{s}h(t)a^{s+t}u\| \le p(u) \le 1 \qquad (\text{Re } t > 0).$$

In particular $q(a^t) \leq \omega(0)$ for every t > 0 and $(a^{1/n})_{n \geq 1}$ is a bounded approximate identity for \mathscr{A} because $a^{1+1/n} \xrightarrow[n]{} a$. Finally, if $y \in \mathbf{R}$ and $\alpha \in \mathscr{A}$, $\lim_{t \to iy} a^t \alpha$ exists (see [6, p. 84]) and we have

$$||a^{iy}|| = \sup_{n} ||a^{iy}(a^{1/n})|| = \sup_{n} ||a^{1/n+iy}|| \le \omega(y).$$

The basic idea in the proof of Lemma (2.1) to obtain \mathscr{A} from A by means of I is contained in [3, §7]. Furthermore, according to the terminology of [3, Lemma (2.1)] is really a consequence of the fact that $(\lambda_t a^t)_{\operatorname{Re} t \ge 0, |\lambda_t| \le h(t)}$ is a stable under products from a pseudobounded set of regular quasimultipliers of A (see §2 of [3] for definitions). We give here this detailed proof of Lemma (2.1) for the sake of completeness.

LEMMA (2.2). Let A, \mathscr{A} be as in Lemma (2.1) and let X be a Banach A-module such that $X^{\perp} = (0)$. If $D: A \to X$ is a continuous derivation then there exist a Banach \mathscr{A} -module Z which contains continuously X and a continuous derivation $\tilde{D}: \mathscr{A} \to Z$ such that the restriction of \tilde{D} to A is D.

PROOF. We will use the notations of the proof of Lemma (2.1). The number

$$\| x \| = \sup_{\operatorname{Re} t \ge 0, |\lambda_t| \le h(t), p(u) \le 1} \| \lambda_t a^t u x \| \qquad (x \in X)$$

defines a norm on X such that $|||x||| \leq ||x||$. Let Y be the completion of X with respect to ||| |||. Since $|||b \cdot x||| \leq q(b)||x||$ $(b \in A, x \in X)$ we can define by continuity a continuous bilinear mapping $(\alpha, x) \in \mathscr{A} \times X \mapsto a \cdot x \in Y$ which extends the A-module operation on X. Observe also that $|||b \cdot x||| \leq ||b|| |||x|||$ $(b \in A, x \in X)$ whence, defining again by continuity $b \cdot x' (x' \in Y)$, Y becomes a Banach A-module. Let Z be the vector space of all linear operators $T: I \to Y$ such that $T(bu) = b \cdot Tu$ $(b \in A, u \in I)$ and $\sup_{p(u) \leq 1} |||Tu||| < +\infty$. Under the norm $|||T||| = \sup_{p(u) \leq 1} |||Tu|||$, Z is a Banach space and the mapping $x \in X \mapsto T_x \in X$, where $T_x(u) = u \cdot x$, $(u \in I)$ is injective and continuous. If we define $(b \cdot T)(u) := T(b \cdot u)$ for every $b \in A, T \in Z, u \in I$, then $b \cdot T \in Z$ and

$$\|b \cdot T\| = \sup_{p(u) \le 1} \|T(b \cdot u)\| \le \|T\|q(b),$$

so Z admits a structure of Banach \mathscr{A} -module. Now, we have

$$\begin{split} \|Db \cdot u\| &= \|D(b \cdot u) - b \cdot Du\| \le \|D(b \cdot u)\| + \|b \cdot Du\| \\ &\le \|D(b \cdot u)\| + q(b)\|Du\| \\ &= \|D\|p(bu) + q(b)\|D\|p(u) \\ &\le 2\|D\|q(b)p(u) \qquad (u \in I, \ b \in A) \end{split}$$

Therefore $||Db||| \leq 2||D||q(b) \ (b \in A)$ so we define \tilde{D} as the extension (by continuity) of D on \mathscr{A} . It is easy to check that \tilde{D} is a continuous derivation. \Box

THEOREM (2.3). Let A be a Banach algebra generated by an analytic semigroup $(a^t)_{\operatorname{Re} t>0}$ such that $||a^{1+iy}|| = O(|y|^{\rho}) (|y| \to +\infty)$ for some $0 \le \rho < 1/2$. Then A is weakly amenable.

PROOF. Consider a Banach A-module X and a continuous derivation $D: A \to X$. First, we suppose that $A^{\perp} = (0)$ and $X^{\perp} = (0)$. We have that $||a^{1+iy}|| \leq k(1+|y|) \ (y \in \mathbf{R})$ for some $k \geq 1$. Therefore if we put $\omega(y) = k(1+|y|)^{\rho}$ $(y \in \mathbf{R})$, Lemmas (2.1) and (2.2) apply. Let $\mathscr{A}, Z, \tilde{D}$ be as in these lemmas. By Proposition (1.1) there exists a continuous derivation Δ : Mul $(\mathscr{A}) \to \text{Hom}(\mathscr{A}; Z)$ which extends \tilde{D} . Take $y \in \mathbf{R}$. Then, by Lemma (2.1), $||a^{iny}|| ||a^{-iny}||/n \to 0$ as $n \to \infty$. Therefore, by Theorem 1.4, 2B of [1] we deduce that $\Delta(a^{iy}) = 0$. Let l be a continuous linear form on Hom $(\mathscr{A}; Z)$. The mapping $l(\Delta(a^t)a^2)$ is analytic and bounded on H, and

$$l(\Delta(a^{t})a^{2}) = l(\Delta(a^{1+t}) \cdot a - a^{1+t} \cdot \Delta a) \xrightarrow[t \to iy]{} l(\Delta(a^{1+iy})a - a^{1+iy} \cdot a)$$
$$= l(\Delta(a^{iy}) \cdot a^{2}) = 0 \quad \text{for every } y \in \mathbf{R}.$$

It follows that $D(a^t)a^2 = \Delta(a^t) \cdot a^2 = 0$ so $D(a) \cdot a^2 = 0$. Then $D(a) \cdot a \in X^{\perp} = (0)$, i.e. $D(a) \in X^{\perp} = (0)$.

Secondly, in the general case we consider $D^{\perp}: A/A^{\perp} \to X/X^{\perp}$ as in the Introduction. According to the first part of this proof, we obtain that $\overline{Da} = D^{\perp}(\bar{a}) = \bar{0}$, i.e. $Da \in X^{\perp}$. Therefore $a \cdot Da = 0$ and so $D(a^n) = 0$ for every $n \ge 2$. But this implies that $Da^t = 0$ ($t \in H$) (see [4, p. 379], again). Consequently Da = 0 and D = 0. \Box

REMARK. The condition imposed on ρ in the preceding theorem cannot be improved. To see this, consider the Beurling algebra

$$L^1(R,\omega_
ho):=\left\{f\colon \mathbf{R} o \mathbf{C} ext{ measurable: } \|f\|_
ho:=\int_{-\infty}^{+\infty}|f(u)|\omega_
ho(u)\,du<+\infty
ight\}$$

where $\rho > 0$ and $\omega_{\rho}(u) = (1+|u|)^{\rho}$ $(u \in \mathbf{R})$ and denote by A_{ρ} the Banach subalgebra of $L^{1}(R, \omega_{\rho})$ generated by the semigroup

$$a^{t}(u) = \frac{1}{\sqrt{\pi t}} e^{-u^{2}/t}$$
 $(u \in \mathbf{R}, \text{ Re } t > 0),$

which is analytic in $L^1(R, \omega_{\rho})$. Then, if $y \in \mathbf{R}$,

$$\|a^{1+iy}\|_{\rho} = \frac{1}{\sqrt{\pi(1+y^2)}} \int_{-\infty}^{+\infty} e^{-u^2/1+y^2} (1+|u|)^{\rho} \, du$$

and, setting $v = u/\sqrt{1+y^2}$,

$$||a^{1+iy}||_{\rho} \approx \int_{-\infty}^{+\infty} e^{-v^2} |v|^{\rho} |y|^{\rho} \, dv = O(|y|^{\rho}).$$

Now, for $\rho \geq 1/2$, put

$$X_{\rho} := \left\{ f \colon \mathbf{R} \to \mathbf{C} \text{ measurable: } \|f\| = \int_{-\infty}^{+\infty} \frac{|f(u)|}{1+|u|} \omega_{\rho}(u) \, du < +\infty \right\}.$$

 X_{ρ} is a Banach space. Moreover, if $f \in X_{\rho}$ and $g \in A_{\rho}$ then $f * g \in X_{\rho}$ and $\|f * g\| \leq \|f\| \|g\|_{\rho}$. Thus X_{ρ} is a Banach A_{ρ} -module. Define (Dg)(u) = ug(u) $(g \in A_{\rho}, u \in \mathbf{R})$. Then $D: A_{\rho} \to X_{\rho}$ is a nonzero continuous derivation. Thus A_{ρ} is not weakly amenable. (This is a copy of the proof of Theorem (2.3) in [1].)

ACKNOWLEDGEMENTS. I would like to thank Professor H. G. Dales for his useful comments about the original manuscript of this paper.

References

- 1. W. G. Badé, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, preprint.
- 2. J. C. Candeal, Sobre condiciones de suficiencia para la propiedad tauberiana de Wiener, Actas del VII Congreso de Matemáticos de Expresión Latina, Coimbra, Portugal, 1985.
- J. Esterle, Quasimultipliers, representations of H[∞], and the closed ideal problem for commutative Banach algebras, Lecture Notes in Math., vol. 975, Springer-Verlag, Berlin and New York, 1983, pp. 66-162.
- 4. J. Esterle and J. E. Galé, Regularity of Banach algebras generated by analytic semigroups satisfying some growth conditions, Proc. Amer. Math. Soc. 92 (1984), 377-380.
- 5. B. E. Johnson, Continuity of centralizers on Banach algebras, J. London Math. Soc. 41 (1966), 639-640.
- 6. A. M. Sinclair, Continuous semigroups in Banach algebras, London Math. Soc. Lecture Notes, vol. 63, Cambridge Univ. Press, 1982.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, 50009-ZARAGOZA, SPAIN