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ABSTRACT. In this paper it is shown that if A is a Banach algebra generated

by an analytic semigroup (a')Rei>o such that ||o1+1!/|| = 0(\y\p) (y G R),

where 0 < p < 1/2, then A is weakly amenable, that is, each continuous

derivation from A to a commutative A-module is null.

1. Introduction. Let A be a commutative Banach algebra and X a com-

mutative Banach A-module (this means that X is a commutative A-module with

respect to the operation (a, x) EAxX>-^axEX and there exists k > 0 such

that ||a • x\\ < k\\a\\ \\x\\ for every a E A, x E X), or Banach A-module for short. A

linear mapping D : A —> X is a derivation if D(ab) = a ■ Db + b ■ Da (a, b E A). In

this paper we consider only continuous derivations.

Put H = {t E C : Re t > 0}. An analytic semigroup (at)-Re oo in A is an analytic

mapping t E H i—► a1 E A such that at+3 = a* - as (t,s,E H). It is interesting to

know how restrictions on the growth of ||aÉ|| near to the boundary of H affect the

structure of A. This question can be seen detailed in [6, Chapter 5], where three

different types of growth conditions on ||o'|| are considered. In [4], it is shown that

if the semigroup (at)Ret>o satisfies the condition

f+ao log+ ||a1+^||  .
/     Ma   dy< +°°

/-oo      i + y2

(one of those considered in [6]) then the Banach subalgebra B of A generated

by (a')Ret>o is regular. Further, B is also tauberian, as is noticed in [2]. Here,

we consider a semigroup (at)Ret>o sucn that ||a1+î!/|| = 0(|2/|p) (]y\ —» +oo) for

some 0 < p < 1/2 and, under this stronger assumption, we show that B is weakly

amenable, i.e. for every Banach ß-module X each continuous derivation D: B —► X

is null. The proof of this fact consists in extending the derivation D to another

one D: Mul(j/) —► Z where Mul(j/) is the multiplier Banach algebra of a certain

Banach algebra s/ and Z is a Mul^j-module. The procedure followed here to

obtain stf from B was introduced in [3] in relation with the problem of the existence

of topologically simple Banach algebras. This method permits to construct the

elements "aiy" (y E R) as multipliers of sá to conclude, by application of a result

of [1], that D = 0.

Now we recall standard notions and facts. Let A be a commutative Banach

algebra and let X be a Banach A-module.   Put A1- = {b E A: ab = 0 for all
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a E A} and X1- = {x E X: ax = 0 for all a E A}. The quotient Banach space

X/X1- is an A/A±-module with respect to the operation ä ■ x = cT'x (a E A,

x E X, ä = a + A1-, x = x + Xx) since if ai — a2 E A1- and xi — x2 E X1- then

(aiXi — a2x2)b = (ai — a2)bxi + a2(xi — x2)b = 0 for all b E A. Further, X/X1- is

a Banach A/A±-module because

llö-^!! < ||a ■ x\\ =   inf   \\a ■ x — a ■ z\\ < \\a\\ []x\[

so if r E A-1, \\ax\\ = \\(a — r) ■ x\\ < ||a — r|| ||x|| whence ||o • x|| < ||a|| ||i||. Suppose

now that [A4]- = A. Let D: A —* X be a continuous derivation and define

Dx: A/A-1 -» X/X1- by D±(ä) = D(a) (a E A). Dx is well defined: if r E A1-
and a,b E A then D(r) ■ ab = -r • D(ab) = -r(a ■ Db + b ■ Da) = 0. Moreover, Dx

is a derivation and

\\D\a)\\ =   inf  11^(^)11 =   inf   \\D(a-r)\\<\\D\\  inf Ja - r\\ = \\D\\ \\ä\\
reA± reA1- reA1-

which implies that D1- is continuous.

Let j/ be a commutative Banach algebra and (e„)„>i a bounded approximate

identity in sf', i.e. ||en|| < k' (n > 1) for some k' > 1 and aen —> a for every
n

aESé'. For a Banach j/-module X we denote by Hom(j/; X) the set of mappings

T: Sf -> X such that T(ab) = a ■ Tb (a,b E sf). In fact, each T is linear and

bounded [5] and Hom(j/;X) is a Banach space under the usual operations and

norm ||T|| := sup^n^ ||Ta||. Assume sf ■ X = X. In that case, if x E X and

enx = 0 (n > 1) then x = 0 and the mapping x E X r-> Tx E Hom(sf ,X) where

Tx(a) = a- x (a ESf), is an injection. Also, for sf X = X, X is a Banach Mul(sf)-

module with respect to the operation (T, x) E Mul(sf) x X <-> T ■ x = Ta ■ y E X,

where a E sf, y E X and x = a ■ y (see [3, p. 96]). Note that Uom(sf;Sf) =

Mul(sf).

PROPOSITION ( 1.1 ). Let Sf be as above, let Y be a Banach Sf -module and let

D: sf —> y be a derivation. Then there exists a (unique) derivation D: Mul(^) —♦

H.om(sf ,Y) such that D(a) = D(a) for every aESf.

PROOF. Since sf possesses a bounded approximate identity we have that sf ■

Sf = Sf and Sf ■ Y is a closed subspace of Y, by Cohen's Theorem [6]. Put

X = sfY. Then sf X = sfsf Y = sf Y =X, D(sf) = D(sfsf) csfY +sfY = X

and we can define D: Mul(sf) -^ Eom(sf ,Y) as D(T)(a) = D(Ta) - T ■ Da

(a E sf, T E Mul^)). It is easy to verify that D is a derivation such that

D(a) = D(a) for every a E sf.

2. Semigroups and weak amenability. Let A be a Banach algebra and let

(û')Ret>o be an analytic semigroup in A. It is well known that [a*A]- = [asA]-

(t,s E H) [6, p. 7]. Throughout this section we suppose that A is generated by

(at)Ret>o- A consequence of this, when (at)R.et>o is such that ||a1+,!/|| = 0(MP)

{\y\ ~f +00) for some 0 < p < 1/2, is that A is also generated by the subalgebra

of all polynomials in a1, say P(a) [4, p. 379]. Then P(a) C a1/2A C A and so

[a*A]- = [a1/2A]~ = P(a)~ = A (t E H). Without loss of generality we assume

lla'H < 1 for every t > 1. Put a = a1.
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LEMMA (2.1). Let A be a Banach algebra generated by an analytic semigroup

(a')Ret>o and such that Ax = (0). Let u : R —> R such that oj(y) > 0, w(yi +2/2) <

u(yt) ■ u)(y2) and ||a1+!2,|| < w(y) (y,2/1,2/2 € R). Then there exists a continuous

injection with dense range A'—^sf where sf is a Banach algebra with a bounded

approximate identity such that atya := limt-^a'a exists in sf for every a E sf

(y E R). Moreover (aiy)y€R C Mul(sf) and \\aiy\\ < w(y) (y E R).

PROOF. Put h(t) = w(Imí)-1 (Reí > 0). First, note that, by considering 6* =

a2t (Reí > 0) and Q(y) = u(2y) (y E R), we can assume that supRet>0 ||/i(i)a1+t||

< +00 since
111,1 + « II _ \\n2 + 2t\\ <■ ||-l+¿2Imt|i n   1-rRetii

< w(2Im t) = ¿D(Im t)        (Reí > 0).

Now, for y E R, put 2fy = {b E A: a1+iyb = ac for some cE A}. If b E 2¡y then

c is unique because Ax = (0).  Define Ty(b) := c(b E 2y).  Then Ty is a densely

defined operator on A since a E 2¡y. Moreover, it is routine to verify that Ty is a

closed operator. We will write aty instead of Ty. Observe that a0 is the identity.

Consider

f 1
/= < uE A: uE2Sy (yER), sup HAto'uH <+oo > .

Ret>0,|A,|<h(t)

/ is a nontrivial dense ideal of A because a E I- Put

p(u) = sup ||Ato u||        (u E I).
Ret>0,\Xt\<h(t)

The mapping p is a complete norm on / such that ||u|| < p(u), p(bu) < ||&||p(t¿)

(b E A, u E I). For b E A, define q(b) = supu€l^u-¡<1 p(bu). Then q is an algebra

norm on A such that q(b) < \[b[\ (b E A). Let sf be the g-completion of A. Then

sf is generated by (at)Ret>0, and

c(/i(i)a') =        sup        ||As/i(i)as+tii|| < p(u) < 1        (Reí > 0).
Res>0,p(u)<l

In particular q(o}) < w(0) for every í > 0 and (a1/n)n^i is a bounded approximate

identity for sf because a1+1/" —» a.  Finally, if y E R and a E sf, limt—« a*a
n

exists (see [6, p. 84]) and we have

Ua^ll = sup Ha^a1/")!! = sup Ha1/"^! < u{y).    D
n n

The basic idea in the proof of Lemma (2.1) to obtain sf from A by means of

I is contained in [3, §7]. Furthermore, according to the terminology of [3, Lemma

(2.1)] is really a consequence of the fact that (Xtat)Ret>0,\xt\<h(t) is a stable under

products from a pseudobounded set of regular quasimultipliers of A (see §2 of [3]

for definitions). We give here this detailed proof of Lemma (2.1) for the sake of

completeness.

LEMMA (2.2). LetA,sf be as in Lemma (2.1) and let X be a Banach A-module

such that X1- = (0).   // D: A —> X is a continuous derivation then there exist a
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Banach sf -module Z which contains continuously X and a continuous derivation

D: sf —► Z such that the restriction of D to A is D.

PROOF. We will use the notations of the proof of Lemma (2.1). The number

IIz| = sup HAta'uxll        (x E X)
Re«>0,|A,|</i(«),p(«)<l

defines a norm on X such that |||z|f < ||x||. Let Y be the completion of X with

respect to ||| |||. Since ||6 ■ xj\ < g(6)||a;|| (b E A, x E X) we can define by continuity

a continuous bilinear mapping (a, a;) E sf x X i—► a ■ x E Y which extends the

A-module operation on X. Observe also that ||6 • z|| < ||6|| ||z| (b E A, x E X)

whence, defining again by continuity b-x' (x' E Y), Y becomes a Banach A-module.

Let Z be the vector space of all linear operators T: I —* Y such that T(bu) = b ■ Tu

(bEA,uEl) and supp(u)<1 |Tu| < +00. Under the norm ||T| = sup^,^ ¡\Tu\¡,

Z is a Banach space and the mapping x E X >—► Tx E X, where Tx(u) = u ■ x,

(u E I) is injective and continuous. If we define (b ■ T)(u) := T(b ■ u) for every

b E A, T E Z, u E I, then b ■ T E Z and

|||6- T|| =   sup   |T(6.u)|<|T|g(Ä),
p(u)<l

so Z admits a structure of Banach jaf-module. Now, we have

]\Db ■ u[\ = [\D(b -u)-b- Du[\ < [\D(b • U)| + |6 ■ Du\¡

<\\D(b-u)\\+q(b)[\Du\\

= \\D\\p(bu)+q(b)\\D\\p(u)

< 2\]D]\q(b)p(u)        (uEl, bEA)

Therefore \\Db\\ < 2\\D[\q(b) (b E A) so we define D as the extension (by continuity)

of D on sf. It is easy to check that D is a continuous derivation.    D

THEOREM (2.3). Let A be a Banach algebra generated by an analytic semi-

group (at)Ret>o such that \\a1+%y\\ = 0(\y]p) (\y[ —* +00) for some 0 < p < 1/2.

Then A is weakly amenable.

PROOF. Consider a Banach A-module X and a continuous derivation D: A —>

X. First, we suppose that AL = (0) and X1- = (0). We have that ||a1+¿y||

< fc(l + I2/I) (y E R) for some k > 1. Therefore if we put oj(y) = k(l + [y\)p

(y E R), Lemmas (2.1) and (2.2) apply. Let sf ,Z, D be as in these lemmas. By

Proposition (1.1) there exists a continuous derivation A: Mul(¿/) —► Ylom(sf;Z)

which extends D. Take y E R. Then, by Lemma (2.1), \\ainy\\ \\a-'ny\\/n -> 0 as

n —► 00. Therefore, by Theorem 1.4, 2B of [1] we deduce that A(aiy) = 0. Let / be

a continuous linear form on Hom(sf; Z). The mapping l(A(at)a2) is analytic and

bounded on H, and

/(A(a*)a2) = /(A(o1+t) ■ a - a1+t ■ Aa) —^ l(A(a1+iy)a - a1+iy ■ a)
t—*iy

,2= l(A(aiy)   a2)=0       for every y ER.

It follows that D(at)a2 = A(o})-a2 = 0 so D(a)-a2 =0. Then D(a)a E X1- = (0),

i.e. D(a) 6I1- (0).
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Secondly, in the general case we consider D1- : A/A1 —> X/X1- as in the Intro-

duction. According to the first part of this proof, we obtain that Da = D±(ä) = 0,

i.e. Da E X1-. Therefore a ■ Da = 0 and so D(an) = 0 for every n > 2. But this

implies that Da1 = 0 (t E H) (see [4, p. 379], again). Consequently Da = 0 and

D = 0.     D
REMARK. The condition imposed on p in the preceding theorem cannot be

improved. To see this, consider the Beurling algebra

L1(R,u>p) := < f: R —► C measurable: ||/||p := /        \f(u)\u>p(u)du < +oo >

where p > 0 and u>p(u) = (l+|u|)'' (u E R) and denote by Ap the Banach subalgebra

of L1(R,ojp) generated by the semigroup

a*(u) = -^=e~u2/t        (uER, Reí > 0),

V7TÍ

which is analytic in L1(R,uip). Then, if y E R,

, r + oo

===== e--/1+»(l+>|)'*i
1 + y2) J-oo

r+OO
,l-¡-tyi|    _

s/W+ïfî
and, setting v = u/yl + y2,

/ + °° 2

e'" ]v\p\y\"dv = 0(\y\p).
-oo

Now, for p > 1/2, put

Xp := if: R -» C measurable: ||/|| = f       \^\ojp(u) du < +ool.
I J-oo    f + lwl J

Xp is a Banach space. Moreover, if / E Xp and g E Ap then f * g E Xp and

11/ * g\\ < 11/11 llffllp- Thus Xp is a Banach Ap-module. Define (Dg)(u) = ug(u)
(g E Ap, uER). Then D : Ap —► Xp is a nonzero continuous derivation. Thus Ap

is not weakly amenable. (This is a copy of the proof of Theorem (2.3) in [1].)
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