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BANACH LATTICES WITH THE SUBSEQUENCE

SPLITTING PROPERTY

LUTZ W. WEIS

(Communicated by William J. Davis)

Abstract. A Banach lattice X has SSP if every bounded sequence in X has a

subsequence that splits into a A'-equi-integrable sequence and a sequence with

pairwise disjoint support. We characterize such lattices in terms of uniform

order continuity conditions and ultrapowers. This implies that rearrangement

invariant function spaces with the Fatou-property have SSP.

0. Introduction

In [11] Kadec and A. Pelczyriski made the observation that every bounded

sequence (fn) of Lp[0,1], 1 < p < oo, has a subsequence that splits into

two 'extreme' sequences (gk) and (hk), where the hk 's have pairwise dis-

joint support and the gk 's are L -equi-integrable, i.e. sup¿. ||^^||¿ —► 0 for

H(A)-+0.
They used this fact to study the subspace structure of L,[0, 1]. Soon, this

idea proved to be useful also in various other contexts and it was observed that

the above splitting is possible in more general Banach function spaces. E.g.

in [4 and 10] such splittings appear in the study of isomorphic embeddings of

Banach function spaces and it was pointed out that they are possible in Orlicz

function spaces with the A2-condition and in ^-concave lattices (cf. [7]). Equi-

integrable and pairwise disjoint sequences play an important part in the study

of compactness properties of positive operators (see e.g. [6, 7, 15 and 13]) and,

more recently, such splittings of sequences were considered in the context of

ergodic theorems for positive contractions in [1]. It follows from this work, that

the above splitting is also possible in Banach lattices with uniformly monotone

norm.

On the other hand, there are Banach lattices with sequences for which the

splitting is not possible. A simple example is c0, but Figiel, Ghoussoub and

Johnson also have constructed reflexive, p-convex Banach lattices without the

subsequence splitting property. This raises the question: what kind of structural
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property of Banach lattices makes the splitting work? In this paper we give two

characterizations of the subsequence splitting property. One of them in terms

of a 'uniform' order continuity of X (Theorem 2.8), the second in terms of

ultrapowers X^ of X (Theorem 2.5). While the sufficient conditions we quoted

in the first paragraph require the whole ultrapower X% to have order continuous

norm, we show that order-continuity of a relatively 'small' band X of X^ is

already necessary and sufficient. In a sense made precise in § 1, X is the 'same'

function space as X on a 'larger' measure space.

We also find a large new class of spaces with the subsequence splitting prop-

erty, namely all rearrangement invariant function spaces with the Fatou-

property (equivalently, with no subspace isomorphic to c0, see Corollary 2.6).

1. Preliminaries on ultraproducts and equi-integrable sets

In this paper X is always a Banach lattice with order continuous norm, which

has a weak unit. By a general representation theorem (see e.g. [12, 1.6.14]) X

can be represented as a lattice ideal of Ll(Q,Z,p.) on some probability space

(Q, Z, n) such that

(1) Loo(n,l,p)cXcLx(Ci,l,p).

In the following we always assume that X is given in this way. Let 21 be a

free ultrafilter on N. The ultraproduct X% of X is defined as the quotient

*a = UX)/M ,        M = {(/„) G l^X): 21-lim ||/J = 0}.

/ = [/„] denotes the equivalence class of the sequence (fn) c X and ||/|| =

21-lim ll/Jlj . X^ is also a Banach lattice with [/J A [gn] = [/„ A gn]. (See [9]
for details of this construction.)

1.1. Definition. By X we denote the band {1} in I generated by [fn],

fn = 1, and X    is the orthogonal band of X in X% .

Following a construction in [3] we can represent J asa Banach function lat-

tice: For L = L,(Q, Z, p), L is an abstract L-space which can be represented

as Lx (Ù, Z, p.) in such a way that the elements [xA ] e L, Anel., correspond

to characteristic functions xA, A el., with p(A) = \\[%A ]\\L = 2t-limju(^n).

Now the lattice embeddings in ( 1 ) extend to lattice embeddings

(2) L^X.Ï.ÎDcXcL^Ù.l.p).

1.2. Examples, (a) If A' is a purely atomic lattice then X = X.

(b) A rearrangement invariant function space X on (Q,Z,/z) is of the form

X = {/ 6 L,(fl,ß): r € X0},       \\f\\x = \\f\\Xa

where /* is the decreasing rearrangement of / on [0,1] and XQ is a rear-

rangement invariant function space on [0,1] (see [2, 18.2]). Then

X = {/ G Lx(ñ,p): fi* e x0},      u/u- = u/1
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In particular, for 1 < q < oo: Lq(Q, p) = Lq(Q., p).

Proof, (a) Choose Qm c Q such that Q\Qm consists of finitely many atoms

and p.(QJ - 0. If 0 < [/„] G X then ßm = 21-lim,, ||/„|ßm || - 0 for m -+ oo.

Otherwise there are e > 0 and Um G 21 with Um D Um+l D ■ • ■ , V\Um = <Z>,

such that H/JijJI > e for n e Um . Then g = [gn] with gn = /J^ for

« G Um\Um+x satisfies 0 < g < f and g e X which contradicts ||g|| > e.

ßm —> 0 implies that / = 2l-lim/n exists in the norm of X and [/J = [/].

(b) Let 0</eI. By Proposition 1.5 below there is a sequence fneX

with / = [/J which is equi-integrable in Lx(Çl,p). Denote by D(t) and

Dn(t) the distribution functions of / G X and fn e X, i.e. D(t) = p(\f\ > t),

Dn(f) = ß(\fn\ > t). The functions Dn, n e N, are equi-continuous on [0,oo)

and 2l-limni)n(0 = D(t) for all t € [0,oo) by [3, Proposition 1.3]. Hence

D = 2t- lim ¿>n in the sup-norm and

U/H- »a-limll/J, =SUlim||/Xo = ll/X-    ü

1.3. Proposition. For all f e X we have \\f\\ = supw ||/ A ml\\.

Proof. Let / = [fn] e X with ||/J = 1. For e > 0 choose cn with \fn A
cn 1[| = 1 — e. We have to show that there is an m with Um = {n : cn < m} e 21

because then

||/„ A ml|| > ||/„ A c„ 11| = l-e   for all « G Um

and the claim follows. Otherwise we have 21- lim cn = cc and gn = f - fn A

cn\ —> 0 in measure. Then g = [jj E I but also g < f e X. This implies

21-lim \\gn\\ = 0 which contradicts ||gj| > e .   G

1.4. Remark. A subset M c X is called equi-integrable in X if

sup{||^/||: / G M,p(A) <ô}^0   forô^O.

It follows from the order continuity of X that M is equi-integrable in X iff

sup{|||/|-|/|Afl||:/eJl/}->0 for t^œ.

1.5. Proposition. Let f = [fn] e X^ .

(a) / belongs to X if and only if 21- lim /„ = 0 with respect to the topology

of convergence in measure,

(b) / is an order continuous element of X (i.e. \\xAf\\x —v 0 for p(A) —* 0)

if and only if f has a representation f — [fn] with an equi-integrable sequence

in X.

Proof, (a) Since l"1 = [if we have that [/J G Xx iff

a-lim|||/B|A/wl|| = 0   for all m.

(b) If the sequence (fn ) is equi-integrable in X then

U^/ll- < supfllXj/J : p(B) < p(A)} - 0   for p(A) - 0.
n
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Now let 0 < / = [fn] e X be an order continuous element. Choose a sequence

(nj such that

(3) ||/-/A«wl||~<2-m.

Put g   = / A n, 1  and choose gn < n x 1  with g   = [gn ].  For each m > 1

choose a sequence (g™)nels with

(4) gm = [g:] = f*nm+xl-fAnJ,        g™ < (nm+x-nm)l

II*« II* = H*   II? ̂ 2 for all«.

Put hn = J2mgnneX. Since / A nml = ££' / it follows from (3) and (4)

that / = [«„].  («„) is equi-integrable in X because for all «

k\k
f

fc=i
e*:^»«i. £ ft < 2      .    D

1.6. Notation. In analyzing equi-integrable sets we need the following 'norm-

distribution' of / G X :

df(t) = \\f\\ -|| l/l A il ||    for'GR+.

Since X is order continuous, d, is continuous, decreasing and lim(_>oo dAt) =

0. It follows from 1.3 and 1.5(b) that d, for f e X has these properties too.

1.7. Proposition. Let M c X be bounded.

(a) If M is an equi-integrable set in X, then {d, ,f e M} is a compact

subset of C[0, oo) with respect to uniform convergence.

(b) If fne M and fn —► 0 in measure, then

dAt) -+ 0 for n -* oo   for all t> 0.

Proof, (a) Since 1^(0 - df(s)\ < ||/|| ■ \s - t\ the set {df,fe M} is equi-
continuous on C[0,s] for all 5. Equi-integrability implies that dj-(t)-*0 for

í —> oo, uniformly for f e M . (b) clear.   D

2. The characterization theorem

Throughout this section, X denotes a Banach lattice with order continuous

norm, represented as a function spaces as in (1).

2.1. Definition. X has the subsequence splitting property (SSP) if for every

bounded sequence (fn)cX there is a subsequence (nk) and sequences (gk),

(hk) with \gk\r\\hk\ = 0 and /^ = gk+hk such that

(i)  (£*)  ¡s equi-integrable in X, i.e.  || \gk\ - |gj A f 1|| —► 0 for t —> oo

uniformly in k .

(ii) The «^ 's are pairwise disjoint.

The following examples appear in the literature:
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2.2. Examples, (a) L (Q , p), 1 < p < oo , and more generally Orlicz-function

spaces satisfying the D2-condition have the SSP. (See [11, 4].)

(b) [7] ^-concave Banach lattices with q < oo have SSP. Recall that X is

^-concave if there is a constant C such that for all /,,..., fn e X

\\Efn\\>c(E\\fn\\qy,q-

(c) [1] Banach lattices with a uniformly monotone norm have SSP. The norm

is uniformly monotone, if for ever a > 0 there is a ß > 0 such that for

f,geX+ with 11/11 > a and ||¿|| < 1 we have ||/ + *|| > ||¿|| + ß .
(d) Purely atomic Banach lattices have SSP. In this case, SSP is just a restate-

ment of the Bessarga-Pelczynski basis selection principle [5, p. 42].

Since each of the assumptions in (a) to (d) implies that X% has order con-

tinuous norm, it follows from Theorem 4 below that we have SSP in each of

these cases, but we also see that the conditions (a) to (d) are far from being

necessary. Indeed, only the relatively small band X of X„ has to have order

continuous norm.

On the other hand, the following counterexamples are known.

(e) X = c0 does not have SSP. (Just consider fn = J^mml em , em = (ôm j)r)

(f) [7] There are reflexive, p-convex Banach lattices such that X does not

have SSP but X* has SSP.   D

In the following characterization theorem, we need a variant of finite repre-

sentability (compare [9]).

2.4. Definition. We say that /^ 's are equi-normably embedded into X if for

every e > 0 there are f" G X  , i = 1 , ... ,n , n e N with

(i)  IL/,1 = 1, fir\J" = 0 for ifj,
(u) IIÇL, /,IL< 1 +«, »-e. [/,"./„"] is (1 +«) isomorphic to /„°° ,

(iii) for every i, the sequence (df„)   norm converges in C[0, oo).

2.5. Theorem. For a Banach lattice  X   the following statements are equi-

valent:

( 1 ) X has the subsequence splitting property.

(2) X has order continuous norm (see Definition 1.1).

(3) c0 does not embed in X.

(4) /^ cannot be embedded equi-normably in X.

Proof. We can assume that c0 does not imbed into X since this is implied by

all of the above conditions.

(l)=>(2). Otherwise, there are pairwise disjoint Am e Z, / = [fn] e X+

and ô > 0 such that ||/^,„|| > ô . Choose a sequence lm with

(5) \\fxA,„Mmn>ö.



92 L. W. WEIS

For a fixed k we choose A™ el,, «GN, m = I , ... ,k , with

XA,„ = [XA,«],       fXAm = \fXAA   and   A™nAln = 0

for m ,1 e {I , ... ,k),  m ^ /, and all n.   Since 2l-limw//(^^) = p(Am),

21- lim ll/^m A lm 11| > a there is an index «^ such that for m= I, ... ,k,

(6) M<) < 2p(Am),        \\f„kXA,„t A/Ml|| > Ô.

We will show now that fn   has no subsequence that splits. Otherwise, there

were a subsequence Fj = f„   .an equi-integrable sequence g} e X, and a

pairwise disjoint sequence «   with T7 = g¡ + « , g. Ah, = 0.

For notational convenience put also B™ = A™ . To obtain a contradiction

we choose e > 0 with

(7) /i(B)<e=>sup\\gjXB\\<S/4.
j

Next we choose m such that p(Am) < e/2 and y > m with

(8) llJWo^KW,.

Since p(Bj) < 2p(Am) < e by (6), we obtain from (7) and (8) that

\\FjXbt A lm\|| < ||^„,|| + ||A, A /m 11| < 5/4 + /m • ô/4lm = Ô/2.

On the other hand, (6) implies the contradiction ||F./„,„ A /  1|| > S .

(2) => (1). For a bounded sequence (fn) e X, we can write / = [fn] = g + h

with g e X, he Xx . By Proposition 1.5 there are sequences (gn) and (hn)

with g = [gn], h = [hn] such that (gn) is equi-integrable in X and hn goes

to zero in measure. Hence ||/n - g — hn\\ —► 0 and there is a subsequence «^

with ||/„ -gn - h„|| ■£ 0.

(2) => (4). Assume to the contrary that there are (f") c X, /' = 1,...,« ,

n e N, with the following properties

(i) /,",... ,/M" are pairwise disjoint for all n , \\f"\\ = 1.

(ii) /",..., /n" are ( 1 + e)-equivalent to the unit vector basis of /^ .

(iii) (df„)n=i ¡+x     uniformly converges to some di on [0,oo).

Put /" = 0 for i> n. Denote by gj the X-component of /. = [f" ,n €N].

Since

\\Sl A ml||~ = ||/ A ml|| = 2t-lim||/" A m\\

= l-\imdfn(m) = l-di(m)
n      J i '

and lim^^ d¡(t) - 0 we have \\g¡\\x = 1 • The g¡ 's are also pairwise disjoint

by (i). W¡ get from (ii) that / = [£JL, /"] G Xa with ||/|| < 1 + e. If g is

the Z-component of / we have g¡ < g for all i e N and the g( 's span /°°
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in X. Therefore, X cannot be order continuous if /^° 's embed equinormably

into X.

(4) => (3). Assume that c0 embeds into X, i.e., there is a pairwise disjoint

sequence /. e X, ||/|| — 1, which is (1 + e)-equivalent to the unit vector

basis of c0. For a fixed k e N we choose representations (/")„ of / for

i = I , ... ,k with /" A/" = 0 for i¿ j and n e N. There is a Uke%L such

that for all ne Uk

£/,"
(=i

<l+e,        ||/"||>l-e   fori = 1, ... ,k.

This implies already that [/" , ... ,fk] is (1 + e)-isomorphic to /£, for all

n e Uk. It follows from Proposition 1.3 and the equi-continuity (compare

Proposition 1.7) of the functions df„, n e N, that 2t-limni7,„ = d, with

respect to uniform convergence. Therefore we can choose nk e Uk with

sup \df*k (t) - rf, (01 < ï    for / = 1.k.

(3) =► (2). A Banach lattice, which is not order continuous contains l°° [14,

Theorem 5.14].   o

2.6. Corollary. Every rearrangement invariant function space X which does not

contain c0, has the subsequence splitting property.

Proof. c0 is not contained in X iff every increasing sequence f < fn+x <•••

with ||/J| < C has a sup in X and fn / sup/n in norm (e.g. [14, Proposition

5.15]). It follows now from Example 1.2.b that if X has this property, X has

it too.

There is also a more direct proof of the corollary: By Example 1.2.b, we can

assume that A' is a rearrangement invariant space on [0,1]. For a bounded

sequence f„e X we choose by Helley's theorem a subsequence of f* (which

we call again f* ) such that f* —> / pointwise to some measurable function

/. By order continuity we have f\,x,m ,, € X for all m and ||/|,1/m ,]|| <

SUP„ Il/„ll • Hence / G X by the Fatou property. For every m we choose nm

such that ||(/„; V / - f)Xll/mJ < i ■ Then

Sm = fnmZ{\f„m\<f:m(\lm)}

is equi-integrable in X and hm = f   - gm goes to zero in measure.   D

2.7. Corollary. X and X* have the subsequence splitting property iff X is

reflexive. In this case X* = X*.

Proof. " => " Since X has order continuous norm, we have by [12, p. 29],

X* = XX = |/GL1(fi,/i)||/.<?^<oo   foralUGxJ .

WehaveLjñ,í)crcíx with ||/||~ = sup{// • g dp: \\g\\~ < 1} .
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Indeed, since X* has order continuous norm, we can represent / G X* as

/ = [/„] with an equi-integrable sequence fn in X* (cf. Proposition 1.5).

Choose gne X with ||#J = 1 and fn(gn) = \\fn\\x. . Put [gn] = g + g

with g e X, g_= [g] e Xx and note that 21- lim fn(g_ ) = 0 since (fn) is

equi-integrable in X*. Hence

ll/ll- = 21-lim 11/11 = a-lim/„(ij < f(g) < ||/||~x .

The reverse inequality is clear.

For feXx we have /A«l e L^Cp) c X* and ||/A«1||~< \\f\\xx . Since

X* does not contain c0 , it follows from [ 12] 1 .c.4 that / = supn / A n 1 G X*.

Hence a = X* has also order continuous norm and it follows from [12] l.c.5

that X is reflexive. " <= " Use [12] l.c.5.   G

Next we characterize the SSP in terms of a 'uniform' order continuity prop-

erty.

2.8. Theorem. For a Banach lattice X, the following are equivalent

( 1 ) X has the subsequence splitting property

(2) X has an equivalent lattice norm 11| -1| I such that for every d e C(0 , oo)

with 0 < d(t) —> 0 for t —> oo we have

sup{| |£/|||: / G X with df<d}-+ Oforp(A) - 0.

(3) X has an equivalent lattice norm \\\ ■ \\\ such that a set M c X is

equi-integrable in X if and only if {d, : f e M} is a compact subset of

C(0, oo) with the sup-norm.

Remark. The typical renorming we use in (2) and (3) is

(9)       111/111 = 11/11 + £ 2-1/11, ,        11/11, = sup ¡\\xAf\\:p(A) < 1) .
k=m

Observe that X = (L2[-l ,0] © L2[0, l])x has SSP but does not satisfy (2)

or (3). Indeed, if we choose fn e X such that the /„|(_, 0] are pairwise

disjoint with ||/„|(_, 0]|| = 1 and the /J[0 ,. are the Rademacher functions

then dfn(t) = 0 for t > 1, although fn is not equi-integrable.

Proof. (1) => (3) We observed already in 1.7 that for an equi-integrable set M

the set {df , / G M) is compact in C[0, oo). To prove the converse we may

restrict ourselves to sets M of positive functions. We use the renorming (9).

Let M c (X, 11| • || |) be such that {df: f e M} is compact in C[0, oo). For

fneM with / —► | ||/n A /1|| | converging uniformly on [0,oo) to a function

d e C[0, oo), we have to show that (fn) is equi-integrable. Otherwise, by (1)

there are a subsequence of fn (which we denote again by fn), an equi-integrable

sequence gn and a pairwise disjoint sequence (hn) with

fn = hn + 8n- K A g„ m 0, ||«J>¿>0.
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By Proposition 1.7 we can assume that t —* \ \\gn At I || | also converges uniformly

to d. On the other hand, there is an M < oo and N e N such that

\\g„\\m = suP{\\XAgn\\- ß(A) ^ m}^0/4   for all« andm>M,

PJL > 3<ï/4    for all «> N.II   „UM -       I -

For n> N and all t e (0, oo) we obtain

M-\ oo

lll/„An|||>||g„A/||+5:2-m||^Ad||m+^2-'"||«„An||m
w=l m=M

oo

>MI^Aii|||-X:2-lkJL + 2-A/(||«j|A/-||«n-«„An||M)

>|||S„A>l||| + 2-M(¿/2-||«n-«,,A/||).

Hence for every « > N there is a ? G (0, oo) with

lll/„Ail|||-|||^A/l|||>2-A/-2ci>0.

But we observed earlier that this difference should go to zero uniformly.

(3) =>• (2). Choose an equivalent lattice norm on X for which (3) holds and

observe that the set M = {df : f e X;df < d} is compact in C[0, oo] by the

same argument we used in the proof of Proposition 1.7.

(2) => (1). Choose an equivalent lattice norm on X for which (2) holds.

Let (fn) be a bounded, positive sequence in X. Since the functions s —*

\\fn A sl\\, « G N, are equi-continuous on every finite interval [0, /], we can

choose a subsequence of fn (call it again (fn)) such that the functions 5 —►

\\fn A il||, « G N, converge uniformly on every [0,m], m e N. Put C —

supr>0lim„ ||/„ Ai||.

For every m e N we choose «m and tm with nm > «m_, , tm < tm+x —> oo

such that

(10) C + i>||/„AU>C-¿    forall«>«m.

Put now gm = fnmAtml , hm = fnm-fnmMml and d(t) = C-infm ||gMA/||. d is

decreasing and assume for a moment that dim/^oo d(t) — 0. Since ||gm|| —* C

by (10) we can assume that ||gm|| = C. Then d (t) < d(t) for t > 0 and

it follows from (2) that (gm) is equi-integrable. Observe that {hm / 0} c

{/„„, >tm} = Am and that p(AJ -» 0 for m -> oo since tm — oo and (/J

is bounded in Lx(p). Now we obtain the required splitting for f = gm + hm

by applying a disjointification procedure to (hm).

It remains to show that limi^oo d(t) = 0. Otherwise there is a / G N and a

subsequence (mk) with ||gm A/c|| < C - 2l~  .

Since ||gw|| = C we have m, —► oo for /V —> oo. Therefore, for a /c with

tm A k > tt and n     > n¡ we get from (10) that

II^A/cii^n/^A^ii^c-r1.

This contradiction completes the proof.   D
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