THE VARIETY OF PAIRS OF MATRICES WITH $\operatorname{rank}(A B-B A) \leq 1$

MICHAEL G. NEUBAUER

(Communicated by Donald S. Passman)

Abstract

We will show that the variety of pairs of $n \times n$ matrices over an algebraically closed field with rank one commutator consists of $n-1$ irreducible components each of dimension $n^{2}+2 n-1$.

Let F be an algebraically closed field, $M_{n}(F)$ the algebra of $n \times n$ matrices over F and

$$
M_{n}^{(k)}(F)=\left\{(A, B) \in M_{n}(F) \times M_{n}(F) \mid \operatorname{rank}(A B-B A) \leq k\right\}
$$

It is well known [6 or 1] that the variety $M_{n}^{(0)}(F)$ is irreducible. Guralnick [2] showed that the variety $M_{n}^{(1)}(F)$ is not irreducible, while Hulek [3] showed that $M_{n}^{(k)}(C)$ is irreducible for $k \geq 2$. In this note, we will show that $M_{n}^{(1)}(F)$ is the union of $n-1$ irreducible components of dimension $n^{2}+2 n-1$. First we introduce some notation. Set

$$
\begin{aligned}
{[A, B] } & =A B-B A \\
H & =\left\{A \in M_{n}(F) \mid A \text { is diagonal }\right\} \\
K & =\left\{A \in M_{n}(F) \mid A \text { has distinct eigenvalues }\right\} \\
K^{\prime} & =H \cap K \\
U & =\left\{(A, B) \in M_{n}^{(1)}(F) \mid A \text { is nonderogatory }\right\} \\
V & =\left\{(A, B) \in M_{n}^{(1)}(F) \mid A \in K\right\}
\end{aligned}
$$

K is an open set in the Zariski topology of $M_{n}(F)$ and hence V is an open set of $M_{n}^{(1)}(F)$. It has also been shown in [2] that U is open in $M_{n}^{(1)}(F)$.

[^0]We will also refer to the following sets:

$$
\begin{aligned}
& N_{i}=\left\{A \in M_{n}(F) \left\lvert\, A=\left(\begin{array}{ll}
0 & C \\
0 & 0
\end{array}\right)\right. \text { where } C \in M_{i \times(n-i)}(F)\right\} \\
& \text { for } i=0, \ldots, n-1 . \\
& N_{i}^{(1)}=\left\{A \in N_{i} \mid \operatorname{rank} A \leq 1\right\} \quad \text { for } i=0, \ldots, n-1 . \\
& W_{i}=\left\{(A, B) \in V \mid C, C A, \ldots, C A^{i} \text { are linearly dependent }\right\} \\
& \bigcap\left\{(A, B) \in V \mid C, A C, \ldots, A^{n-i} C \text { are linearly dependent }\right\} \\
& \quad \text { for } i=1, \ldots, n-1 \text { where } C=[A, B] .
\end{aligned}
$$

If W is a set, let \bar{W} denote the closure of W in the Zariski topology of the underlying space.

The first lemma summarizes some known results.

Lemma 1.

1. If $(A, B) \in M_{n}^{(1)}(F)$ then A and B have the P-property i.e. they can be put in upper triangular form simultaneously.
2. U is dense in $M_{n}^{(1)}(F)$.
3. Let $p(x) \in F[x]$. Then $(A, B) \in M_{n}^{(1)}(F)$ (respectively U, V, \bar{U}, \bar{V} or W_{i}) iff $(A, B-p(A)) \in M_{n}^{(1)}(F)$ (respectively U, V, \bar{U}, \bar{V} or $\left.W_{i}\right)$.
4. Let $P \in G L_{n}(F)$. Then $(A, B) \in M_{n}^{(1)}(F)$ (respectively U, V, \bar{U}, \bar{V} or W_{i}) iff $\left(P A P^{-1}, P B P^{-1}\right) \in M_{n}^{(1)}(F)$ (respectively U, V, \bar{U}, \bar{V} or W_{i}).
5. If

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{4}
\end{array}\right)
$$

is nonderogatory, where $A_{1} \in M_{i}(F)$ and $A_{4} \in M_{n-i}(F)$, then A_{1} and A_{4} are also nonderogatory.
6. $N_{i}^{(1)}$ is irreducible and $\operatorname{dim} N_{i}^{(1)}=n-1$ for $i=1, \ldots, n-1$.
7. If $A \in M_{i}(F)$ and $B \in M_{(n-i)}^{(}(F)$ have no common eigenvalue and $C \in M_{i \times(n-i)}(F)$, then there exists a unique $X \in M_{i \times(n-i)}(F)$ such that $A X-X B=C$.
Proof.

1. See Theorem 1 in [2 or 4].
2. See Lemma 3 in [2].
3. For a fixed $p \in F[x]$, the map $(A, B) \mapsto(A, B-p(A))$ is an isomorphism of $M_{n}^{(1)}(F)$ which leaves U, V, \bar{U}, \bar{V} and W_{i} invariant.
4. For a fixed $P \in G L_{n}(F)$, the $\operatorname{map}(A, B) \mapsto\left(P A P^{-1}, P B P^{-1}\right)$ is an isomorphism of $M_{n}^{(1)}(F)$ which leaves U, V, \bar{U}, \bar{V} and W_{i} invariant.
5. If $m_{A_{1}}(x)$ and $m_{A_{4}}(x)$ are minimal polynomials of A_{1} and A_{4}, then $\left(m_{A_{1}} m_{A_{4}}\right)(A)=m_{A_{1}}(A) m_{A_{4}}(A)=0$. Hence $\operatorname{deg} m_{A_{1}}=i$ and $\operatorname{deg} m_{A_{4}}=$ $n-i$.
6. Clearly $N_{i}^{(1)}$ and $R=\left\{C \in M_{i \times(n-i)} \mid\right.$ rank $\left.C \leq 1\right\}$ are isomorphic as varieties. Define

$$
\begin{aligned}
\pi: M_{i \times 1}(F) \times M_{1 \times(n-i)}(F) & \rightarrow R \\
(v, w) & \mapsto v w .
\end{aligned}
$$

The mapping π is regular and onto. Since $M_{i \times 1}(F) \times M_{1 \times(n-i)}(F)$ is irreducible, this implies that R is irreducible. Furthermore if $C \neq 0$, then $\operatorname{dim} \pi^{-1}(C)=1$. Hence $\operatorname{dim} N_{i}^{(1)}=\operatorname{dim} R=\operatorname{dim} M_{i \times 1}(F) \times$ $M_{1 \times(n-i)}(F)-1=i+(n-i)-1=n-1$.
7. See Theorems 2 and 3 on p. 422 in [5].

Our first goal is to prove that V is dense in $M_{n}^{(1)}(F)$. The following lemma establishes this for a subset of $M_{n}^{(1)}(F)$.
Lemma 2. Let

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{4}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{4}
\end{array}\right)
$$

such that $\left.(A, B) \in U ; A_{1}, B_{1} \in M_{i}(F)\right) ; A_{2}, B_{2} \in M_{i \times(n-i)}(F) ; A_{4}, B_{4} \in$ $M_{n-i}(F) ;\left[A_{1}, B_{1}\right]=0$ and $\left[A_{4}, B_{4}\right]=0$. If A_{1} and A_{4} have no common eigenvalue, then $(A, B) \in \bar{V}$.
Proof. Since A_{1} and A_{4} have no common eigenvalue there exists

$$
P_{2} \in M_{i \times(n-i)}(F)
$$

such that $A_{1} P_{2}-P_{2} A_{4}=A_{2}$ by part 7 of Lemma 1. If we set

$$
P=\left(\begin{array}{cc}
I_{i} & P_{2} \\
0 & I_{n-i}
\end{array}\right)
$$

then

$$
P A P^{-1}=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{4}
\end{array}\right) \quad \text { and } \quad P B P^{-1}=\left(\begin{array}{cc}
B_{1} & B_{2}+P_{2} B_{4}-B_{1} P_{2} \\
0 & B_{4}
\end{array}\right) .
$$

Hence using part 4 of Lemma 1 we may assume that $A_{2}=0$.
Since $\left[A, \operatorname{diag}\left(B_{1}, B_{4}\right)\right]=0$ and A is nonderogatory, there exists a polynomial $p(x) \in F[x]$ with $p(A)=\operatorname{diag}\left(B_{1}, B_{4}\right)$. Part 3 of Lemma 1 implies that it is enough to consider (A, B) with $A_{2}=0, B_{1}=0$ and $B_{4}=0$. Define

$$
\begin{aligned}
& W=\left\{\left.\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{4}
\end{array}\right) \right\rvert\, X_{1} \text { and } X_{4} \text { have no common eigenvalue }\right\}, \\
& \text { where } X_{1} \in M_{i}(F) \text { and } X_{4} \in M_{n-i}(F), \text { and define } \\
& W^{\prime}=\{X \in W \mid X \text { has distinct eigenvalues }\} .
\end{aligned}
$$

Note that W^{\prime} is dense in W and $A \in W$. For every $X \in W$ there exists a unique $S_{X} \in M_{i \times(n-i)}(F)$ by part 7 of Lemma 1 such that

$$
X_{1} S_{X}-S_{X} X_{4}=B_{2}\left(X_{4}-A_{4}\right)-\left(X_{1}-A_{1}\right) B_{2}
$$

Furthermore the entries of S_{X} are regular functions in the coordinates of X. Therefore we have a regular mapping

$$
\begin{aligned}
\phi: W & \rightarrow M_{n}^{(1)}(F) \\
X & \mapsto\left(X, B+\left(\begin{array}{cc}
0 & S_{X} \\
0 & 0
\end{array}\right)\right) .
\end{aligned}
$$

Clearly $(A, B) \in \phi(W) \subseteq \overline{\phi\left(W^{\prime}\right)} \subseteq \bar{V}$.
We are now able to prove:
Proposition 1. V is dense in $M_{n}^{1}(F)$.
Proof. Since U is dense in $M_{n}^{(1)}(F)$ by Lemma 1 it suffices to show that V is dense in U. Let $(A, B) \in U$. Using parts 1 and 4 of Lemma 1 we may assume A and B are upper triangular. Therefore

$$
[A, B]=\left(\begin{array}{ll}
0 & C \\
0 & 0
\end{array}\right) \in N_{i}^{(1)} \quad \text { for some } i=0, \ldots, n-1
$$

and

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{4}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{4}
\end{array}\right)
$$

where $A_{1}, B_{1} \in M_{i}(F)$ and $A_{4}, B_{4} \in M_{n-i}(F)$ are upper triangular and A_{2}, $B_{2} \in M_{i \times(n-i)}(F)$. Since $\left[A_{1}, B_{1}\right]=0$ and A_{1} is nonderogatory, $B_{1}=p\left(A_{1}\right)$ for some $p(x) \in F[x]$. Considering ($A, B-p(A)$), we may also assume $B_{1}=0$ by part 3 of Lemma 2. We proceed by induction on i. The case $i=0$ was proved in [6]. So assume $i>0$ and let $\alpha_{1}, \ldots, \alpha_{i}$ be the eigenvalues of A_{1}. Define $j(A)=$ order of $\left\{k \mid \alpha_{k}\right.$ is not an eigenvalue of $\left.A_{4}\right\}$. If $j(A)=i$, then A_{1} and A_{4} have no common eigenvalue. Therefore we can apply Lemma 2 and conclude that $(A, B) \in \bar{V}$.

Now use reverse induction on $j(A)$. If $j(A)<i$, then we can assume that α_{i} is an eigenvalue for A_{4}. Let r_{k} denote the k th row of C. If $r_{i}=0$, then $[A, B] \in N_{i-1}^{(1)}$ and so are done by induction on i. If $r_{i} \neq 0$, then there exists $P_{1} \in G L_{i}(F)$, upper triangular, such that

$$
C^{\prime}=P_{1} C=\left(\begin{array}{c}
0 \\
\cdot \\
\cdot \\
\cdot \\
r_{i}
\end{array}\right)
$$

After conjugating by

$$
P=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & I_{n-i}
\end{array}\right)
$$

we may assume

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{4}
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & B_{2} \\
0 & B_{4}
\end{array}\right) \quad \text { and } \quad[A, B]=\left(\begin{array}{cc}
0 & C^{\prime} \\
0 & 0
\end{array}\right)
$$

Let

$$
L=\left\{\left(A+t E_{i i}, B\right) \mid t \in F\right\}
$$

As L is a line in $M_{n}^{(1)}(F)$ it is irreducible and since $B_{1}=0, L$ is contained in $M_{n}^{(1)}(F)$. Except for finitely many $t \in F, j\left(A+t E_{i i}\right)>j(A)$. Hence, by induction on $j(A), L \cap \bar{V}$ is cofinite in the line L. Thus $(A, B) \in L \subseteq \bar{V}$, as desired. This finishes the proof by induction on i.

If $(A, B) \in V$, then there exists $P \in G L_{n}(F)$ such that $A_{0}=P A P^{-1} \in K^{\prime}$ and $B_{0}=P B P^{-1}$ is upper triangular by Lemma 1 . This implies $\left[A_{0}, B_{0}\right] \in N_{i}^{(1)}$ for some $i=1, \ldots, n-1$. An explicit computation of $\left[A_{0}, B_{0}\right]$ shows that in this case $B_{0}=p\left(A_{0}\right)+N$ for some $N \in N_{i}$ and some $p(x) \in F[x]$. On the other hand, for a given $A \in K^{\prime}$ and $C \in N_{i}^{(1)}$ there exists a unique $N_{A, C} \in N_{i}$ with $\left[A, N_{A, C}\right]=C$. Furthermore, the entries of $N_{A, C}$ are regular functions in the coordinates of A and C. Thus

$$
\begin{gathered}
\phi_{i}: G_{i}=G L_{n}(F) \times K^{\prime} \times H \times N_{i}^{(1)} \rightarrow V \\
(P, A, B, C) \mapsto\left(P A P^{-1}, P\left(B+N_{A, C}\right) P^{-1}\right)
\end{gathered}
$$

is a regular mapping for all $i=1, \ldots, n-1 . V_{i}=\phi\left(G_{i}\right)$ is irreducible since it is the image of the irreducible variety G_{i} under the regular mapping ϕ_{i}. The argument above also shows that $V=V_{1} \cup \cdots \cup V_{n-1}$.

To compute $\operatorname{dim} V_{i}$ we note that $\left\{P \in M_{n}(F) \mid A P=P A\right\}$ is isomorphic to each of the $n!$ components of $\phi^{-1}((A, 0))$. Since A has distinct eigenvalues this shows that $\operatorname{dim} \phi^{-1}((A, 0))=n$. Hence $\operatorname{dim} V_{i} \geq \operatorname{dim} G_{i}-n=n^{2}+2 n-1$. We also have a regular mapping

$$
\pi: V \rightarrow K \quad(A, B) \mapsto A
$$

If $A \in K^{\prime}$, then $\pi^{-1}(A) \supseteq\left\{(A, B) \mid B=D+N_{A, C}, D \in H, C \in N_{i}^{(1)}\right\}$. Hence $\operatorname{dim} \pi^{-1}(A) \geq \operatorname{dim} H+\operatorname{dim} N_{i}^{(1)}=2 n-1$, which implies $\operatorname{dim} V_{i}=n^{2}+2 n-1$.

We now state the main result.

Theorem 1.

1. $V_{i}=W_{i}$.
2. The irreducible components of $M_{n}^{(1)}(F)$ are $\bar{V}_{1}, \ldots, \overline{V_{n-1}}$. In particular $M_{2}^{(1)}(F)$ is irreducible and if $n>2$, then $M_{n}^{(1)}(F)$ is not irreducible.
3. $\operatorname{dim} \bar{V}_{i}=\operatorname{dim} V_{i}=n^{2}+2 n-1$ for all $i=1, \ldots, n-1$.

Proof.

1. If $(A, B) \in V_{i}$, we can assume $[A, B] \in N_{i}^{(1)}$. Hence $(A, B) \in W_{i}$. If $(A, B) \in W_{i}$, we can assume $A \in K^{\prime}, B=p(A)+N$ where $p(x) \in$ $F[x]$ and $N \subset N_{j}$ for some $j=1, \ldots, n-1$. Hence $[A, B]=$ $C \in N_{j}^{(1)}$ for some $i=1, \ldots, n-1$. If $j<i$ then the condition $C, C A, \ldots, C A^{n-i}$ linearly dependent implies that C, and hence N,
has at most $n-i$ nonzero columns. However, this implies that there exists $T \in G L_{n}(F)$ with $T A T^{-1} \in K^{\prime}$ and $T N T^{-1} \in N_{i}$. Therefore $(A, B) \in V_{i}$. Similarly, if $j>i$, then $(A, B) \in V_{i}$.
2. It was shown above that V_{i} is irreducible. Hence \bar{V}_{i} is irreducible. From part 1 we know that if, $(A, B) \in \bar{V}_{i}$ then $[A, B]=C, C A, \ldots$, $C A^{i}$ are linearly dependent and $C, A C, \ldots, A^{n-i} \subset$ are linearly dependent. If we let $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \in K^{\prime}$ and $B_{i}=\left(b_{l k}^{i}\right) \in N_{i}$, where

$$
b_{l k}^{i}= \begin{cases}\left(a_{l}-a_{k}\right)^{-1} & \text { if } 1 \leq l \leq i<k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

then $\left(A, B_{i}\right) \in \bar{V}_{i}$ but $\left(A, B_{i}\right) \in \bar{V}_{j}^{c}$ for $j \neq i$. Together with the fact $M_{n}^{(1)}=\bar{V}_{1} \cup \cdots \cup \overline{V_{n-1}}$, this shows that the \bar{V}_{i}^{\prime} s are the irreducible components of $M_{n}^{(1)}(F)$.
3. This was shown above. As a consequence the formula for the dimension of $M_{n}^{(k)}(F)$ given in [3] is also valid in the case $k=1$.

Acknowledgment

I want to thank R. Guralnick for his very helpful suggestions and comments.

References

1. M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. 73 (1961), 324-348.
2. R. M. Guralnick, A note on pairs of matrices with rank one commutator, Linear and Multilinear Algebra 8 (1979), 97-99.
3. K. Hulek, A remark on certain matrix varieties, Linear and Multilinear Algebra 10 (1981), 169-172.
4. T. J. Laffey, Simultaneous triangularization of matrices-low rank cases and the non-derogatory case, Linear and Multilinear Algebra 6 (1978), 269-305.
5. P. Lancaster and M. Tismenetsky, The theory of matrices, Academic Press, Inc., Orlando, 1985.
6. T. Motzkin and O. Taussky, Pairs of matrices with property, L. II, Trans. Amer. Math. Soc. 80 (1955), 387-401.

University of Southern California, Department of Mathematics, University Park, Los Angeles, California 90089-1113

[^0]: Received by the editors March 25, 1988.
 1980 Mathematics Subject Classification (1985 Revision). Primary 15A03; Secondary 14M12.
 Partially supported by NSF grant DMS-8700961.

