THE VARIETY OF PAIRS OF MATRICES WITH

 $rank(AB - BA) \le 1$

MICHAEL G. NEUBAUER

(Communicated by Donald S. Passman)

ABSTRACT. We will show that the variety of pairs of $n \times n$ matrices over an algebraically closed field with rank one commutator consists of n-1 irreducible components each of dimension $n^2 + 2n - 1$.

Let F be an algebraically closed field, $M_n(F)$ the algebra of $n \times n$ matrices over F and

$$M_n^{(k)}(F) = \{(A, B) \in M_n(F) \times M_n(F) | \operatorname{rank}(AB - BA) \le k \}.$$

It is well known [6 or 1] that the variety $M_n^{(0)}(F)$ is irreducible. Guralnick [2] showed that the variety $M_n^{(1)}(F)$ is not irreducible, while Hulek [3] showed that $M_n^{(k)}(C)$ is irreducible for $k \ge 2$. In this note, we will show that $M_n^{(1)}(F)$ is the union of n-1 irreducible components of dimension n^2+2n-1 . First we introduce some notation. Set

$$[A, B] = AB - BA$$

$$H = \{A \in M_n(F) \mid A \text{ is diagonal}\}$$

$$K = \{A \in M_n(F) \mid A \text{ has distinct eigenvalues}\}$$

$$K' = H \cap K$$

$$U = \{(A, B) \in M_n^{(1)}(F) \mid A \text{ is nonderogatory}\}$$

$$V = \{(A, B) \in M_n^{(1)}(F) \mid A \in K\}.$$

K is an open set in the Zariski topology of $M_n(F)$ and hence V is an open set of $M_n^{(1)}(F)$. It has also been shown in [2] that U is open in $M_n^{(1)}(F)$.

Received by the editors March 25, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 15A03; Secondary 14M12. Partially supported by NSF grant DMS-8700961.

We will also refer to the following sets:

$$N_i = \left\{ A \in M_n(F) \, | \, A = \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix} \text{ where } C \in M_{i \times (n-i)}(F) \right\}$$
 for $i = 0 \, , \, \ldots \, , n-1 .$
$$N_i^{(1)} = \left\{ A \in N_i \, | \, \operatorname{rank} A \leq 1 \right\} \quad \text{for } i = 0 \, , \, \ldots \, , n-1 .$$

$$W_i = \left\{ (A \, , B) \in V \, | \, C \, , CA \, , \, \ldots \, , CA^i \text{ are linearly dependent} \right\}$$

$$\bigcap \left\{ (A \, , B) \in V \, | \, C \, , AC \, , \, \ldots \, , A^{n-i}C \text{ are linearly dependent} \right\}$$
 for $i = 1 \, , \, \ldots \, , n-1 \text{ where } C = [A \, , B].$

If W is a set, let \overline{W} denote the closure of W in the Zariski topology of the underlying space.

The first lemma summarizes some known results.

Lemma 1.

- 1. If $(A, B) \in M_n^{(1)}(F)$ then A and B have the P-property i.e. they can be put in upper triangular form simultaneously.
- 2. U is dense in $M_n^{(1)}(F)$.
- 3. Let $p(x) \in F[x]$. Then $(A, B) \in M_n^{(1)}(F)$ (respectively $U, V, \overline{U}, \overline{V}$ or W_n) iff $(A, B p(A)) \in M_n^{(1)}(F)$ (respectively $U, V, \overline{U}, \overline{V}$ or W_n).
- 4. Let $P \in GL_n(F)$. Then $(A, B) \in M_n^{(1)}(F)$ (respectively $U, V, \overline{U}, \overline{V}$ or W_i) iff $(PAP^{-1}, PBP^{-1}) \in M_n^{(1)}(F)$ (respectively $U, V, \overline{U}, \overline{V}$ or W_i).
- 5. If

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_4 \end{pmatrix}$$

is nonderogatory, where $A_1 \in M_i(F)$ and $A_4 \in M_{n-i}(F)$, then A_1 and A_4 are also nonderogatory.

- 6. $N_i^{(1)}$ is irreducible and dim $N_i^{(1)} = n 1$ for i = 1, ..., n 1.
- 7. If $A \in M_i(F)$ and $B \in M_{(n-i)}(F)$ have no common eigenvalue and $C \in M_{i \times (n-i)}(F)$, then there exists a unique $X \in M_{i \times (n-i)}(F)$ such that AX XB = C.

Proof.

- 1. See Theorem 1 in [2 or 4].
- 2. See Lemma 3 in [2].
- 3. For a fixed $p \in F[x]$, the map $(A, B) \mapsto (A, B p(A))$ is an isomorphism of $M_n^{(1)}(F)$ which leaves $U, V, \overline{U}, \overline{V}$ and W_i invariant.
- 4. For a fixed $P \in GL_n(F)$, the map $(A, B) \mapsto (PAP^{-1}, PBP^{-1})$ is an isomorphism of $M_n^{(1)}(F)$ which leaves $U, V, \overline{U}, \overline{V}$ and W_i invariant.
- 5. If $m_{A_1}(x)$ and $m_{A_4}(x)$ are minimal polynomials of A_1 and A_4 , then $(m_{A_1}m_{A_4})(A) = m_{A_1}(A)m_{A_4}(A) = 0$. Hence $\deg m_{A_1} = i$ and $\deg m_{A_4} = n i$

6. Clearly $N_i^{(1)}$ and $R = \{C \in M_{i \times (n-i)} | \text{ rank } C \le 1\}$ are isomorphic as varieties. Define

$$\pi \colon M_{i \times 1}(F) \times M_{1 \times (n-i)}(F) \to R$$
$$(v, w) \mapsto vw.$$

The mapping π is regular and onto. Since $M_{i\times 1}(F)\times M_{1\times (n-i)}(F)$ is irreducible, this implies that R is irreducible. Furthermore if $C\neq 0$, then dim $\pi^{-1}(C)=1$. Hence dim $N_i^{(1)}=\dim R=\dim M_{i\times 1}(F)\times M_{1\times (n-i)}(F)-1=i+(n-i)-1=n-1$.

7. See Theorems 2 and 3 on p. 422 in [5]. □

Our first goal is to prove that V is dense in $M_n^{(1)}(F)$. The following lemma establishes this for a subset of $M_n^{(1)}(F)$.

Lemma 2. Let

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_4 \end{pmatrix} \quad and \quad B = \begin{pmatrix} B_1 & B_2 \\ 0 & B_4 \end{pmatrix}$$

such that $(A,B) \in U$; $A_1, B_1 \in M_i(F)$; $A_2, B_2 \in M_{i \times (n-i)}(F)$; $A_4, B_4 \in M_{n-i}(F)$; $[A_1, B_1] = 0$ and $[A_4, B_4] = 0$. If A_1 and A_4 have no common eigenvalue, then $(A,B) \in \overline{V}$.

Proof. Since A_1 and A_4 have no common eigenvalue there exists

$$P_2 \in M_{i \times (n-i)}(F)$$

such that $A_1P_2 - P_2A_4 = A_2$ by part 7 of Lemma 1. If we set

$$P = \begin{pmatrix} I_i & P_2 \\ 0 & I_{n-i} \end{pmatrix} ,$$

then

$$PAP^{-1} = \begin{pmatrix} A_1 & 0 \\ 0 & A_4 \end{pmatrix}$$
 and $PBP^{-1} = \begin{pmatrix} B_1 & B_2 + P_2B_4 - B_1P_2 \\ 0 & B_4 \end{pmatrix}$.

Hence using part 4 of Lemma 1 we may assume that $A_2 = 0$.

Since $[A, \operatorname{diag}(B_1, B_4)] = 0$ and A is nonderogatory, there exists a polynomial $p(x) \in F[x]$ with $p(A) = \operatorname{diag}(B_1, B_4)$. Part 3 of Lemma 1 implies that it is enough to consider (A, B) with $A_2 = 0$, $B_1 = 0$ and $B_4 = 0$. Define

$$\begin{split} W &= \left\{ \left(\begin{array}{cc} X_1 & 0 \\ 0 & X_4 \end{array} \right) \mid X_1 \text{ and } X_4 \text{ have no common eigenvalue} \right\} \text{ ,} \\ &\text{where } X_1 \in M_i(F) \text{ and } X_4 \in M_{n-i}(F) \text{ , and define} \\ &W' = \{ X \in W \mid X \text{ has distinct eigenvalues} \}. \end{split}$$

Note that W' is dense in W and $A \in W$. For every $X \in W$ there exists a unique $S_X \in M_{i \times (n-i)}(F)$ by part 7 of Lemma 1 such that

$$X_1S_X - S_XX_4 = B_2(X_4 - A_4) - (X_1 - A_1)B_2.$$

Furthermore the entries of S_X are regular functions in the coordinates of X. Therefore we have a regular mapping

$$\phi \colon W \to M_n^{(1)}(F)$$
$$X \mapsto \left(X, B + \begin{pmatrix} 0 & S_X \\ 0 & 0 \end{pmatrix}\right).$$

Clearly $(A, B) \in \phi(W) \subseteq \overline{\phi(W')} \subseteq \overline{V}$. \square

We are now able to prove:

Proposition 1. V is dense in $M_n^1(F)$.

Proof. Since U is dense in $M_n^{(1)}(F)$ by Lemma 1 it suffices to show that V is dense in U. Let $(A, B) \in U$. Using parts 1 and 4 of Lemma 1 we may assume A and B are upper triangular. Therefore

$$[A, B] = \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix} \in N_i^{(1)}$$
 for some $i = 0, \ldots, n-1$,

and

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_4 \end{pmatrix} , \qquad B = \begin{pmatrix} B_1 & B_2 \\ 0 & B_4 \end{pmatrix}$$

where A_1 , $B_1 \in M_i(F)$ and A_4 , $B_4 \in M_{n-i}(F)$ are upper triangular and A_2 , $B_2 \in M_{i \times (n-i)}(F)$. Since $[A_1, B_1] = 0$ and A_1 is nonderogatory, $B_1 = p(A_1)$ for some $p(x) \in F[x]$. Considering (A, B - p(A)), we may also assume $B_1 = 0$ by part 3 of Lemma 2. We proceed by induction on i. The case i = 0 was proved in [6]. So assume i > 0 and let $\alpha_1, \ldots, \alpha_i$ be the eigenvalues of A_1 . Define j(A) = order of $\{k \mid \alpha_k \text{ is not an eigenvalue of } A_4\}$. If j(A) = i, then A_1 and A_4 have no common eigenvalue. Therefore we can apply Lemma 2 and conclude that $(A, B) \in \overline{V}$.

Now use reverse induction on j(A). If j(A) < i, then we can assume that α_i is an eigenvalue for A_4 . Let r_k denote the kth row of C. If $r_i = 0$, then $[A, B] \in N_{i-1}^{(1)}$ and so are done by induction on i. If $r_i \neq 0$, then there exists $P_i \in GL_i(F)$, upper triangular, such that

After conjugating by

$$P = \begin{pmatrix} P_1 & 0 \\ 0 & I_{n-i} \end{pmatrix}$$

we may assume

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_4 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & B_2 \\ 0 & B_4 \end{pmatrix} \quad \text{and} \quad [A, B] = \begin{pmatrix} 0 & C' \\ 0 & 0 \end{pmatrix}.$$

Let

$$L = \{ (A + tE_{ii}, B) \mid t \in F \}.$$

As L is a line in $M_n^{(1)}(F)$ it is irreducible and since $B_1=0$, L is contained in $M_n^{(1)}(F)$. Except for finitely many $t\in F$, $j(A+tE_{ii})>j(A)$. Hence, by induction on j(A), $L\cap \overline{V}$ is cofinite in the line L. Thus $(A,B)\in L\subseteq \overline{V}$, as desired. This finishes the proof by induction on i. \square

If $(A,B) \in V$, then there exists $P \in GL_n(F)$ such that $A_0 = PAP^{-1} \in K'$ and $B_0 = PBP^{-1}$ is upper triangular by Lemma 1. This implies $[A_0, B_0] \in N_i^{(1)}$ for some $i=1,\ldots,n-1$. An explicit computation of $[A_0,B_0]$ shows that in this case $B_0 = p(A_0) + N$ for some $N \in N_i$ and some $p(x) \in F[x]$. On the other hand, for a given $A \in K'$ and $C \in N_i^{(1)}$ there exists a unique $N_{A,C} \in N_i$ with $[A,N_{A,C}] = C$. Furthermore, the entries of $N_{A,C}$ are regular functions in the coordinates of A and C. Thus

$$\phi_i \colon G_i = GL_n(F) \times K' \times H \times N_i^{(1)} \to V$$

$$(P, A, B, C) \mapsto (PAP^{-1}, P(B + N_{A, C})P^{-1})$$

is a regular mapping for all i=1, ..., n-1. $V_i=\phi(G_i)$ is irreducible since it is the image of the irreducible variety G_i under the regular mapping ϕ_i . The argument above also shows that $V=V_1\cup\cdots\cup V_{n-1}$.

To compute dim V_i we note that $\{\stackrel{1}{P} \in M_n(F) \mid AP = PA\}$ is isomorphic to each of the n! components of $\phi^{-1}((A,0))$. Since A has distinct eigenvalues this shows that dim $\phi^{-1}((A,0)) = n$. Hence dim $V_i \ge \dim G_i - n = n^2 + 2n - 1$. We also have a regular mapping

$$\pi: V \to K \qquad (A, B) \mapsto A.$$

If $A \in K'$, then $\pi^{-1}(A) \supseteq \{(A, B) \mid B = D + N_{A, C}, D \in H, C \in N_i^{(1)}\}$. Hence $\dim \pi^{-1}(A) \ge \dim H + \dim N_i^{(1)} = 2n - 1$, which implies $\dim V_i = n^2 + 2n - 1$. We now state the main result.

Theorem 1.

- 1. $V_i = W_i$.
- 2. The irreducible components of $M_n^{(1)}(F)$ are $\overline{V}_1, \ldots, \overline{V}_{n-1}$. In particular $M_2^{(1)}(F)$ is irreducible and if n > 2, then $M_n^{(1)}(F)$ is not irreducible.
- 3. $\dim \overline{V}_i = \dim V_i = n^2 + 2n 1$ for all i = 1, ..., n 1.

Proof.

1. If $(A,B) \in V_i$, we can assume $[A,B] \in N_i^{(1)}$. Hence $(A,B) \in W_i$. If $(A,B) \in W_i$, we can assume $A \in K'$, B = p(A) + N where $p(x) \in F[x]$ and $N \subset N_j$ for some $j = 1, \ldots, n-1$. Hence $[A,B] = C \in N_j^{(1)}$ for some $i = 1, \ldots, n-1$. If j < i then the condition C, CA, \ldots, CA^{n-i} linearly dependent implies that C, and hence N,

has at most n-i nonzero columns. However, this implies that there exists $T \in GL_n(F)$ with $TAT^{-1} \in K'$ and $TNT^{-1} \in N_i$. Therefore $(A,B) \in V_i$. Similarly, if j > i, then $(A,B) \in V_i$.

2. It was shown above that V_i is irreducible. Hence \overline{V}_i is irreducible. From part 1 we know that if, $(A,B) \in \overline{V}_i$ then $[A,B] = C,CA,\ldots,CA^i$ are linearly dependent and $C,AC,\ldots,A^{n-i} \subset$ are linearly dependent. If we let $A = \operatorname{diag}(a_1,\ldots,a_n) \in K'$ and $B_i = (b_{lk}^i) \in N_i$, where

$$b_{lk}^{i} = \begin{cases} \left(a_{l} - a_{k}\right)^{-1} & \text{if } 1 \leq l \leq i < k \leq n \\ 0 & \text{otherwise} \end{cases},$$

then $(A, B_i) \in \overline{V}_i$ but $(A, B_i) \in \overline{V}_j^c$ for $j \neq i$. Together with the fact $M_n^{(1)} = \overline{V}_1 \cup \cdots \cup \overline{V}_{n-1}$, this shows that the \overline{V}_i' s are the irreducible components of $M_n^{(1)}(F)$.

3. This was shown above. As a consequence the formula for the dimension of $M_n^{(k)}(F)$ given in [3] is also valid in the case k=1. \square

ACKNOWLEDGMENT

I want to thank R. Guralnick for his very helpful suggestions and comments.

REFERENCES

- 1. M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. 73 (1961), 324-348.
- 2. R. M. Guralnick, A note on pairs of matrices with rank one commutator, Linear and Multilinear Algebra 8 (1979), 97-99.
- 3. K. Hulek, A remark on certain matrix varieties, Linear and Multilinear Algebra 10 (1981), 169-172.
- 4. T. J. Laffey, Simultaneous triangularization of matrices-low rank cases and the non-derogatory case, Linear and Multilinear Algebra 6 (1978), 269-305.
- 5. P. Lancaster and M. Tismenetsky, *The theory of matrices*, Academic Press, Inc., Orlando, 1985
- 6. T. Motzkin and O. Taussky, *Pairs of matrices with property*, L. II, Trans. Amer. Math. Soc. **80** (1955), 387-401.

University of Southern California, Department of Mathematics, University Park, Los Angeles, California 90089-1113