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Abstract. It is shown that any complete, noncompact, simply connected Rie-

mannian manifold with nonnegative curvature operator is isometric to the prod-

uct of its compact soul (in the sense of Cheeger-Gromoll) and a complete man-

ifold diffeomorphic to a Euclidean space

1. Introduction

It has been an important problem in Riemannian geometry to determine the

structure of a complete, noncompact manifold M whose sectional curvatures

are nonnegative. J. Cheeger and D. Gromoll in [CG] have shown that M is

diffeomorphic to the total space of a vector bundle over a compact, totally

geodesic submanifold, called the soul, and classified it in dimensions < 3 up to

isometry. These are the most significant results in this direction. In the same

paper the authors left an interesting problem: "Suppose there is a point x G M

such that all the sectional curvatures are positive. Is the soul of M a point, or

equivalently, is M diffeomorphic to the Euclidean space R" ?" This is known

to be true for immersed hypersurfaces in Euclidean space.

In this paper we want to consider a stronger condition on such manifolds,

namely the nonnegativity of the curvature operator (see definition below) and

answer the Cheeger-Gromoll conjecture affirmatively in this case. This in turn

implies a positive answer to the same conjecture for manifolds isometrically

immersed in Euclidean space with codimension two, since it is a well-known

result that in codimension two, the nonnegativity of the sectional curvatures are

equivalent to the nonnegativity of the curvature operator (see [We]). Our result

states

Theorem. Let M" be a complete noncompact, simply connected manifold with

nonnegative curvature operator. Then M is isometric to the product S  x¿P"~
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where S is the k-dimensional soul of M and ¿P is a complete manifold

diffeomorphic to R"~  .

Remark. This result gives a complete topological description of this manifold

since we know the possibilities for the soul S from the classification for simply

connected, compact manifolds with nonnegative curvature operator which ap-

pears in [GM and CY]. Namely, S is a Riemannian product of manifolds of the

following types: compact symmetric spaces, Kahler manifolds biholomorphic

to complex projective spaces and manifolds homeomorphic to spheres.

Corollary. Let Mn be a complete noncompact manifold with nonnegative cur-

vature operator. Then M is locally isometric to a product over S. In particular,

if the curvature operator is positive at some point, then Mn is diffeomorphic

to R\

We want to observe that the nonnegativity of the curvature operator is equiv-

alent to the nonnegativity of the sectional curvatures in two more cases.

(i) manifolds which can be immersed isometrically into space forms with

flat normal connection,

(ii) submanifolds in which the second fundamental form satisfies the con-

dition (4.13) in [KW].

For these cases, our theorem also gives an answer to the Cheeger-Gromoll

conjecture.

Some of the arguments in this paper can also be found in G. Walschap [Wa].

As the referee has pointed out, our theorem follows from a stronger statement

proved independently by M. Strake [S] and J.-W. Yim [Y2], whose preprints

were received after this paper was completed. However, for the special case of

nonnegative curvature operator, we present a simpler proof. The author wishes

to thank the referee for pointing this out.

2. Basic results

For a Riemannian manifold M the curvature operator at x G M is the

linear symmetric map

p:f\(TxM)^f\(TxM)

characterized by

(p(X AY),(WAZ)) = (R(X , Y)Z , W)

where the scalar product on the left-hand side is the induced one at the level of

two-forms and 7? is the Riemannian tensor. Since p is symmetric, it makes

sense to talk about the positivity and the nonnegativity of p.

Now suppose that M is a complete manifold with a soul denoted by 5.

(2.1 ) Proposition. If the curvature operator is nonnegative and dim S >2, then

the inclusion i:S —* M has flat normal bundle.
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2
Proof. For every x G M, let us consider the normal set {w(} in /\ (TXM)

which diagonalizes p with eigenvalues ki. Then for A, Y G TXM we write

A A y = Y\a¡w¡ and therefore

MAAy) = X;^K) = EV,^
with A, > 0. Notice that

(2.2) if the sectional curvature 7C(A , Y) = 0 we have p(X A Y) = 0

since 0 = </>(A Af)jA7) = £>2a(. and ki > 0 for all i.

Now, take x e S, X, Y G TxS and Z e TXSX . By Theorem 3.1 in

[CG], K(X,Z) = 0 and K(Y ,Z) = 0 which implies p(X A Z) = 0 and
P(YaZ) = 0. Using the first Bianchi identity, it is easy to see that R(X , Y)Z =

0. Applying this fact to the Ricci equation for the totally geodesic immersion

i: 5" -> M, we have for all X ,Y gTS and Z ,W g TSx , (R(X , Y)Z , W) =

{Rf(X , Y)Z , W). But the first term is (p(X aY),WaZ) which is zero since

7?(A , Y)Z = 0 and the conclusion follows.

Now suppose M simply connected so that the soul is simply connected.

Proposition (2.1) implies that for each unit normal vector Z at x we can get,

by parallel transportation, a parallel section of the flat normal bundle u(S).

This parallel section together with the proposition below will take us to the

concept of the pseudo-soul.

(2.3) Proposition (Proposition 3.2, [y,]. Let S be a soul of M. Then S has

minimal volume in its homology class.

This result was used by Yim in [T,] to show that if Z is any parallel section

of i/(5) then the map <pz:S x R —► M, given by q>z(x ,t) = expxtZ(x) is

an isometric immersion. In fact, by the Rauch Comparison Theorem [CE],

<pz(-,t) is distance nonincreasing for small t which implies that tpz is an

isometry since for each ;, St = <pz (5 , t) is in the same homology class as 5

and its volume is not less than that of 5. By the connectedness of R, tpz is

an isometric immersion for all f 6 R and its image is isometric to a product

manifold 5 x R. Actually this immersion is totally geodesic (see [2.7] below),

and then for each t, St = tpz(S ,t) is a totally geodesic manifold isometric to

S. Yim has called it a pseudo-soul.

(2.4) Proposition. If the curvature operator is nonnegative, S is simply con-

nected and dim 5 > 2, then the pseudo-soul S also has flat normal bundle.

Proof. Let us consider the pseudo-soul 5 = exps 1Z{, where Z, is a parallel

section of v(S). We can define for each x G S such that x = expx tZx with

x G S, Z,(3c) by y (1) where y(t) = exp^ iZ, . Then Z, is a parallel section

of v(S) by construction. We want to prove that we can construct m linearly

independent sections in v(S) where m is the codimension of the soul. We

fix je G S and if Z2, ... , Zm are unit orthogonal vectors to Z, (x), we define
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Z2, ... ,Zm at x, by parallel transportation along the geodesic y . We claim

that Z2, ... , Z m belong to the normal space to 5, denoted by T- S . In fact,

consider y G S such that y = exp 7Z1 , y e S, and the curves c from x to

y and c from x to y respectively. Let us consider the rectangle /: [0, a] x

[0 ,7] —> M defined by f(s , t) = exp , , tZx (s). We have

(df/ds)(s ,t) = kx,     (df/dt)(s, r) = pzx

with X(s , t), Z,(j , t) having unit length and Zx(s ,1) - Z{(s). Since the Lie

bracket [df/ds,df/dt] = 0, this will be

(2.5) kX(ft)Z{ + kpVxZ{ - pZ{ (k)X - p.kVz¡ X = 0.

We have omitted I for brevity. We see that

(i)   V^Z, = 0, since Z{ is parallel,

(ii)   (Vz A ,Z,) = 0 because tpz (5) is a product,

(iii)   (Vz A , A) = 0 because A is unitary.

Then, (i), (ii) and (iii) imply in (2.5) that Vz A = 0. This implies that 7^5,

is parallel along y and then if Z2, ... ,ZmG TXS   , Z2, ... , Zm G T- S   .

Now we make a parallel transportation of Z2, ... , Zm along c and we write

the expression for 7?(A ,Zl)Zi, i > 2, which is zero by (2.2):

7Î(A ,Z,)Z, = VxVzZt - VZVXZ, - V[XZi]Zt = VXVZZ, = 0

since VXZ¡ = 0 and [A ,Z,] = 0 by (i), (ii), (iii) and (2.5). It follows that

(2.6) 3((VZ»Z,.(s) , VZi(s)Z,(s)))/ds = 0.

But c(0) = x and Vj^Z^O) = 0. So, (2.6) implies VZ|(J)Z(.(s) = 0 for

each 5 . This means that the vectors Z2, ... ,Zm obtained along c by parallel

transportation are the same vectors that we would obtain making parallel trans-

portation of Z2, ... ,Z from x to y along c and then along the geodesic

\p(t) = exp^rZ, . Since by Proposition (2.1), the parallel transportation in 5

does not depend on the curve c joining x to y, the parallel transportation in

s from x to y will not depend on the curve c joining x to y either. This

implies the proposition.

(2.7) Remark. We observe that the above proof also shows that the isometric

immersion tpz is totally geodesic. Since for each xgS, expv tZ{ is a geodesic

in M, all we need is to prove that for each t, S¡ is a totally geodesic subman-

ifold of M. Then, if X(t) and Y(t) are vector fields tangent to 5f, we have

for every i

(2.8) L ( Vx Y , Z,) = (Vz, VxY,Zi) + (Vx Y , VZ| z/> = 0

because R(ZX ,X)Y = 0 and [Z, ,A] = 0 imply that Vz VXY = V^VZ Y = 0

and Z¡ is parallel along y. Since for t = 0 we have (VXY ,Z.) = 0 because

5 is totally geodesic, (2.8) implies that 5, is also totally geodesic.
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(2.9) Proposition. Let M be a manifold as in Proposition (2.4). Then there

exists a smooth foliation of M by totally geodesic manifolds isometric to S.

Proof. First, we prove that for each point x G M there exists a totally geodesic

manifold 5 isometric to 5 such that x G S. For that, consider y: [0 , a] —> M

the minimal connection from x to 5. y (a) G v(S). Let Z be the parallel

normal field defined on 5 such that Z(y(a)) = y (a). Then we have a pseudo-

soul 5 = exps aZ and x G S.

We claim that there exists only one totally geodesic manifold 5 such that

x G S and 5 is isometric to 5. Suppose that there exists 5 with the same

conditions and x 6 5. Let 5 be a pseudo-soul containing x . If A G TxS and

A £ TxS, we consider A the unitary orthogonal projection of A on 7^5 .

Since 5 has flat normal bundle we take the parallel transportation of A along

5. Let us call M = expj tX. M has 5 as a soul, since M is isometric to

5 x R. The vector A belongs to TxM and is transversal to 5. By Theorem

(5.1) of [CG], the geodesic a(t) - exp^ tX must go to infinity. Since M and 5

are totally geodesic, a is a geodesic in M and 5 going to infinity, contradicting

that 5 is compact.

This shows that the foliation is well defined. We need to prove the smoothness

of the foliation. Let 5 be the leaf containing x . Let us take e smaller than the

injectivity radius of v(S). Now we exponentiate the global sections of v(S) at

distances smaller than e and we get totally geodesic manifolds isometric to 5

which coincide with the leaves by uniqueness.

3. Proof of the theorem

By Proposition (2.9) we have two differentiable distributions defined on M,

the first one 7), , given by the tangent vectors to the leaves of the foliation F

and the second D2 = Dx . We will prove that D{ and D2 are involutive and

parallel and the theorem will follow by Frobenius.

In order to prove this, notice that the leaves of F are equidistant and simply

connected. Then we can apply the Theorem of R. Hermann in [H] which says

that MIF is a smooth manifold and admits a Riemannian metric for which

the projection <I>: M —► M ¡F is a Riemannian submersion. We see that for this

submersion, horizontal vectors are orthogonal to the pseudo-souls and vertical

vectors are tangent to the pseudo-souls. Now, it is easy to calculate the O'Neill

tensors (see [O]). With 2? and 'V denoting the projections onto the horizontal

and vertical subspaces and A and V being horizontal and vertical vectors

respectively, we have

TyX = ^(VvX)       AxV = ß?(VxV).

T is zero because the pseudo-souls are totally geodesic. Then it will be enough

to prove that A is zero. By the Corollary 1 of [O] we have for the sectional
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curvature of the plane spanned by A and V

K(X , V) = ((VXT)VV,X) + [[AXV[[2 - ||TKA||2.

But K(X , Y) = 0 and TvX = 0. Then, all we need is to prove that

((VxT)yV,X) = (VXTVV,X) - (TVxVV,X) - (TyVxV,X) = 0.

In fact, using again that the pseudo-souls are totally geodesic we have

TvV = ^(VyV) = 0,

(TVxVV,X)-(TvVxV,X) =

(^(VT(VxV)V)-Jt(VvT(VxV)) - W(VvßT(VxV)),X) = 0.

Hence, it follows that Ax V = 0.

4. Proof of the corollary

Let us consider 5 the soul of M and 5 and M the respective universal

coverings. By Theorem 9.1 of [CG], 5 is isometrically diffeomorphic to 5QxRm

with 50 compact and the splitting is in the sense of Toponogov [T]. Then these

lines in 5 must split off in M too and hence M is isometrically diffeomorphic

to ALj x Rm . But MQ is simply connected and by the previous theorem, M0 =

S' x ¿Pr, where S' is the soul of M0 .

We claim that S0 = S'. For that, consider A e TxSQ. Suppose that A £

TXS' and take the geodesic a(t) = expx tX . This geodesic, again by Theorem

5.1 of [CG], must go to the infinity contradicting the compactness of 50 . The

50 c S'. Since 5 is totally convex, 5 and 50 are totally convex. Now we have

50 and 5 compact, totally convex and without boundary. Applying Theorem

2.1 of [CG], we see that 50 and 5' have the same homotopy type. Since

50 c 5' and both are compact we have the claim.

Now, we have the following diagram

50 x a*r x Rm    n    ) M

4 \Pl
50xRm-^^5

where n is the covering map and 7J1 the projection onto the first factor. Since

n is a local isometry and the fundamental group preserves the splitting 50 x

¿Pr x Rw , Px induces a submersion P2: M —► 5, which is a local product.

In particular, if there is a point such that the curvature operator is positive,

5 must be a point and the corollary follows.
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