# ALGEBRAS OF OPERATORS ISOMORPHIC TO THE CIRCULANT ALGEBRA 

ALAN C. WILDE<br>(Communicated by Louis J. Ratliff, Jr.)


#### Abstract

The algebra of $n \times n$ circulant matrices has a specific structure. This paper displays different operators on linear vector spaces that have the same structure, i.e. are isomorphic.


## 1. Introduction

Complex $n \times n$ circulant matrices are a matrix representation of the group ring (over C) of the cyclic group. P. J. Davis [1] also proves that the set of circulants with complex entries have an idempotent basis. This paper displays algebras of operators which are isomorphic to the algebra of $n \times n$ complex circulant matrices.
$\S 2$ reviews properties of circulants and introduces a cyclic group of automorphisms on the circulant algebra generalizing conjugation. The group ring over C of this group is isomorphic to that of circulants themselves.

In §3, functional equations, whose solutions are functions $\mathbf{C}^{n} \rightarrow \mathbf{C}$, are solved using cyclic and idempotent linear operators on the space (labeled $U$ ) of functions $\mathbf{C}^{n} \rightarrow \mathbf{C}$. Again, this algebra of linear operators is isomorphic to $n \times n$ circulants.
$\S 4$ displays cyclic and idempotent linear operators on the space $V$ of functions on $n \times n$ complex circulants. Furthermore, $\S 4$ shows a relationship between the operators on $V$ and those on $U$.

Finally, $\S 5$ shows a linear involution on $V$ whose group ring is isomorphic to $2 \times 2$ complex circulant matrices.
T. Muir in his classical book on determinants (cf. [3], 1920) discussed properties of circulant matrices. K. B. Leisenring in the years 1969-1979 lectured extensively on the bicomplex plane employing $2 \times 2$ circulant matrices (see his ms. book [4]). The work of Davis, Muir, and Leisenring influenced the author in various ways. Already in 1971, A. C. Wilde [2] discussed aspects of functional equations obtaining generalizations of odd and even functions in terms of $n$th roots of unity in C. A. C. Wilde in [5, 6, 7] generalized properties of

[^0]$2 \times 2$ circulant matrices and 2-dimensional complex analysis to $n \times n$ circulant matrices. More work continuing the present paper is forthcoming.

## 2. Properties of circulants

An $n \times n$ circulant matrix is a square matrix like the following:

$$
X=\left[\begin{array}{llll}
x_{0} & x_{1} & x_{2} \cdots x_{n-1}  \tag{1}\\
x_{n-1} & x_{0} & x_{1} \cdots x_{n-2} \\
x_{n-2} & x_{n-1} & x_{0} \cdots x_{n-3} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1} & x_{2} & x_{3} \cdots x_{0}
\end{array}\right]
$$

Let $A_{n}$ denote the set of circulant matrices with complex entries, or $F=\mathbf{C}$. Let $K$ denote the circulant matrix with $x_{1}=1$ and $x_{j}=0$ for $j \neq 1$. Then $K^{h}$ (the $h$ th power of $K, 1 \leq h \leq n$ ) is the circulant matrix with $x_{h}=1$ and $x_{j}=0$ for all $j \neq h, K^{0}=I$ (the identity matrix), $K^{1}=K$, and $K^{n}=I$. So $X$ can be written as

$$
\begin{equation*}
X=\sum_{h=0}^{n-1} x_{h} K^{h} \tag{2}
\end{equation*}
$$

for $x_{0}, x_{1}, \ldots, x_{n-1} \in \mathbf{C}$. In other words, $K^{0}=I, K, \ldots, K^{n-1}$ forms a basis for the circulants $A_{n}$. Let $a$ denote any of the $n$th roots of one, or $a=e^{2 \pi i / n}$. Let

$$
\begin{equation*}
y_{h}=\sum_{j=0}^{n-1} a^{h j} x_{j} \quad \text { for } h=0,1, \ldots, n-1 \tag{3}
\end{equation*}
$$

Then, as well known (see [1]), the numbers $y_{0}, y_{1}, \ldots, y_{n-1}$ are the eigenvalues of the circulant matrix $X$, each $y_{h}$ having the corresponding eigenvector $\operatorname{Col}\left(1, a^{h}, a^{2 h}, \ldots, a^{(n-1) h}\right)$.

Circulant matrices have also another basis $E_{0}, E_{1}, \ldots, E_{n-1}$ defined by

$$
\begin{equation*}
E_{h}=\frac{1}{n} \sum_{j=0}^{n-1} a^{-h j} K^{j} \quad \text { for } h=0,1, \ldots, n-1 \tag{4}
\end{equation*}
$$

As shown in [1], these matrices have the following properties:

$$
\begin{gather*}
E_{h}^{2}=E_{h} \quad \text { for } h=0,1, \ldots, n-1 ;  \tag{5.1}\\
E_{h} E_{i}=0 \quad \text { for } h \neq i \text { and }  \tag{5.2}\\
E_{0}+E_{1}+\cdots+E_{n-1}=I . \tag{5.3}
\end{gather*}
$$

Also,

$$
\begin{equation*}
K^{h}=\sum_{j=0}^{n-1} a^{h j} E_{j} \quad \text { for } h=1,2, \ldots, n-1 \tag{5.4}
\end{equation*}
$$

Thus, the idempotents $E_{0}, E_{1}, \ldots, E_{n-1}$ form a basis for $A_{n}$, and it is shown in [1] that for $X$ in equation (2) we also have

$$
\begin{equation*}
X=\sum_{h=0}^{n-1} y_{h} E_{h}=y_{0} E_{0}+y_{1} E_{1}+\cdots+y_{n-1} E_{n-1} \tag{6}
\end{equation*}
$$

We have seen that every circulant, or $X \in A_{n}$, can be written in one and only one way in the form (2), or

$$
X=x_{0} I+x_{1} K+x_{2} K^{2}+\cdots+x_{n-1} K^{n-1}
$$

Let us now define the function $\theta: A_{n} \rightarrow A_{n}$ by taking (see Wilde [5])

$$
\begin{align*}
\theta(X) & =x_{0} I+x_{1}(a K)+x_{2}(a K)^{2}+\cdots+x_{n-1}(a K)^{n-1} \\
& =x_{0} I+a x_{1} K+a^{2} x_{2} K^{2}+\cdots+a^{n-1} x_{n-1} K^{n-1} \tag{7}
\end{align*}
$$

i.e., $\theta$ replaces $K$ by $a K$ in (2), and by composition

$$
\begin{equation*}
\theta^{k}(X)=x_{0} I+a^{k} x_{1} K+a^{2 k} x_{2} K^{2}+\cdots+a^{(n-1) k} x_{n-1} K^{n-1} \tag{8}
\end{equation*}
$$

i.e., $\theta^{k}$ replaces $x_{h}$ by $a^{h k} x_{h}$ for $h=0,1, \ldots, n-1$. Also, $\theta^{n}(X)=X$. Then $\theta$ is an automorphism in $A_{n}$ that preserves $\mathbf{C}, \mathbf{C}$ being embedded in $A_{n}$ by the correspondence $z \rightarrow z I$ for $z \in \mathbf{C}$. We have seen that, for any circulant $X \in A_{n}$, or $X=x_{0} I+x_{1} K+\cdots+x_{n-1} K^{n-1}, x_{0}, x_{1}, \ldots, x_{n-1} \in \mathbf{C}$, if we take the numbers $y_{h}=\sum_{j=0}^{n-1} a^{h j} x_{j}, h=0,1, \ldots, n-1$, then relation (6) holds, or $X=y_{0} E_{0}+y_{1} E_{1}+\cdots+y_{n-1} E_{n-1}$, and then

$$
\begin{equation*}
\theta(X)=y_{1} E_{0}+y_{2} E_{1}+\cdots+y_{n-1} E_{n-2}+y_{0} E_{n-1} \tag{9}
\end{equation*}
$$

i.e., $\theta$ shifts the eigenvalues over one space.

To generalize $\operatorname{Re} z$ and $i \operatorname{Im} z$, let $q_{0}, q_{1}, \ldots, q_{n-1}$ be the functions $A_{n} \rightarrow$ $A_{n}$ defined by

$$
\begin{equation*}
q_{h}=\frac{1}{n} \sum_{j=0}^{n-1} a^{-h j} \theta^{j} \quad \text { for } h=0,1, \ldots, n-1 \tag{10}
\end{equation*}
$$

Then

$$
\begin{gather*}
q_{h}^{2}=q_{h} \quad \text { for } h=0,1, \ldots, n-1 ;  \tag{10.1}\\
\quad q_{h} q_{j}=0 \quad \text { for } h \neq j ;  \tag{10.2}\\
\quad q_{0}+q_{1}+\cdots+q_{n-1}=\theta^{0} ; \quad \text { and }  \tag{10.3}\\
q_{0}+a^{h} q_{1}+a^{2 h} q_{2}+\cdots+a^{(n-1) h} q_{n-1}=\theta^{h} . \tag{10.4}
\end{gather*}
$$

Also,

$$
\begin{equation*}
q_{h}\left(x_{0} I+x_{1} K+\cdots+x_{n-1} K^{n-1}\right)=x_{h} K^{h} \quad \text { for } h=0,1, \ldots, n-1 \tag{11}
\end{equation*}
$$

Equations (10), (10.1)-(10.3), and (11) are proved in Wilde [5]. The algebra generated by $I, K, K^{2}, \ldots, K^{n-1}$ and $\theta^{0}, \theta^{1}, \ldots, \theta^{n-1}$ over $C$ are isomorphic and can be called circulant algebras.

If $f$ is an entire function $\mathbf{C} \rightarrow \mathbf{C}$, then

$$
\begin{align*}
& f\left(z_{0} I+z_{1} K+\cdots+z_{n-1} K^{n-1}\right) \\
& \quad=\sum_{h=0}^{n-1}\left[\frac{1}{n} \sum_{k=0}^{n-1} a^{-h k} f\left(\sum_{j=0}^{n-1} a^{j k} z_{j}\right)\right] K^{h} \tag{12}
\end{align*}
$$

for all $z_{0}, z_{1}, \ldots, z_{n-1} \in \mathbf{C}$ as proved by Wilde [6].

## 3. Functional equations

For any entire function $f: \mathbf{C} \rightarrow \mathbf{C}$, equation (12) can be written as follows:

$$
\begin{equation*}
f\left(z_{0} I+z_{1} K+\cdots+z_{n-1} K^{n-1}\right)=\sum_{h=0}^{n-1} F_{h}\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) K^{h} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{h}\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)=\frac{1}{n} \sum_{k=0}^{n-1} a^{-h k} f\left(\sum_{j=0}^{n-1} a^{j k} z_{j}\right) \tag{14}
\end{equation*}
$$

$h=0,1, \ldots, n-1$. The reader may also verify that for each $h, F_{0}, F_{1}, \ldots$, $F_{n-1}$ satisfy the functional equation

$$
\begin{equation*}
F\left(z_{0}, a z_{1}, a^{2} z_{2}, \ldots, a^{n-1} z_{n-1}\right)=a^{h} F\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \tag{15}
\end{equation*}
$$

for $a=e^{2 \pi i / n}$, all $h=0,1, \ldots, n-1$, and all $z_{0}, z_{1}, \ldots, z_{n-1} \in \mathbf{C}$.
Equation (15) is related to the circulant algebra also in another way. Let $U=\left\{F \mid F: \mathbf{C}^{n} \rightarrow \mathbf{C}\right\}$ and let $C$ be the operator $C: U \rightarrow U$, linear in $F$, defined by

$$
\begin{equation*}
C(F)\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)=F\left(z_{0}, a z_{1}, a^{2} z_{2}, \ldots, a^{n-1} z_{n-1}\right) \tag{16}
\end{equation*}
$$

i.e. $C$ assigns to each function $F\left(z_{0}, \ldots, z_{n-1}\right)$ in $U$ the function $F\left(z_{0}, a z_{1}, \ldots, a^{n-1} z_{n-1}\right)$ obtained by substituting $a^{j} z_{j}$ for $z_{j}, j=0,1, \ldots$, $n-1$. If we denote $C^{k}$ the operation $C$ composed with itself $k$ times, then

$$
\begin{equation*}
C^{k}(F)\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)=F\left(z_{0}, a^{k} z_{1}, a^{2 k} z_{2}, \ldots, a^{(n-1) k} z_{n-1}\right) \tag{17}
\end{equation*}
$$

By Wilde [2], $C^{j}=C^{0}$ if and only if $n$ divides $j$; and linear combinations of $C^{0}, C^{1}, C^{2}, \ldots, C^{n-1}$ over $\mathbf{C}$ form a circulant algebra. Equation (15) can now be written in the form

$$
\begin{equation*}
C(F)=a^{h} F \tag{18}
\end{equation*}
$$

Also, we may define the operators $M_{0}, M_{1}, \ldots, M_{n-1}: U \rightarrow U$ by taking

$$
\begin{equation*}
M_{h}=\frac{1}{n}\left(C^{0}+a^{-h} C^{1}+a^{-2 h} C^{2}+\cdots+a^{-(n-1) h} C^{n-1}\right) \tag{19}
\end{equation*}
$$

for $h=0,1, \ldots, n-1$. These operators have the following properties:

$$
\begin{gather*}
M_{h}^{2}=M_{h} \quad \text { for } h=0,1, \ldots, n-1  \tag{20.1}\\
M_{h} M_{j}=0 \quad \text { if } h \neq j \tag{20.2}
\end{gather*}
$$

$$
\begin{equation*}
M_{0}+M_{1}+\cdots+M_{n-1}=C^{0} ; \quad \text { and } \tag{20.3}
\end{equation*}
$$

$$
\begin{equation*}
M_{0}+a^{h} M_{1}+a^{2 h} M_{2}+\cdots+a^{(n-1) h} M_{n-1}=C^{h} \tag{20.4}
\end{equation*}
$$

for $h=0,1, \ldots, n-1$. (Properties (20.1)-(20.3) are proved in Wilde [7]. Properties (20.1)-(20.4) are similar to those of the functions $E_{0}, E_{1}, \ldots, E_{n-1}$ and operators $q_{0}, q_{1}, \ldots, q_{n-1}$ in $\S 2$.

By Wilde [7], a function $F$ in $U$ satisfies equation (15) (or (18)) if and only if $F \in \operatorname{Ran} M_{h}$. Moreover, properties (20.1)-(20.3) above imply that $U=\operatorname{Ran} M_{0} \oplus \operatorname{Ran} M_{1} \oplus \cdots \oplus \operatorname{Ran} M_{n-1} \quad$ (a direct sum), as proved by Wilde in [7]. Each function $F_{h}, h=0,1, \ldots, n-1$, defined by equation (14) is in $\operatorname{Ran} M_{h}$ and in addition

$$
\begin{equation*}
F_{0}+F_{1}+\cdots+F_{n-1}=f\left(z_{0}+z_{1}+\cdots+z_{n-1}\right) . \tag{21}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F_{h}=M_{h}\left(f\left(z_{0}+z_{1}+\cdots+z_{n-1}\right)\right) . \tag{22}
\end{equation*}
$$

## 4. Other circulant algebras

By equations (19) and (17), if a function $g$ maps $\mathbf{C}^{n}$ into $\mathbf{C}$, then

$$
\begin{align*}
& M_{h}(g)\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \\
& \quad=\frac{1}{n} \sum_{k=0}^{n-1} a^{-h k} g\left(z_{0}, a^{k} z_{1}, a^{2 k} z_{2}, \ldots, a^{(n-1) k} z_{n-1}\right) \tag{23}
\end{align*}
$$

for $h=0,1, \ldots, n-1$.
For $f: A_{n} \rightarrow A_{n}$, there exist functions $f_{0}, f_{1}, \ldots, f_{n-1}: \mathbf{C}^{n} \rightarrow \mathbf{C}$ such that

$$
\begin{equation*}
f\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right)=\sum_{h=0}^{n-1} f_{h}\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) K^{h} . \tag{24}
\end{equation*}
$$

Hence, from equation (20.3),

$$
\begin{align*}
f\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right) & =\sum_{h=0}^{n-1} \sum_{i=0}^{n-1} M_{h+i}\left(f_{h}\right) K^{h} \\
& =\sum_{i=0}^{n-1} \sum_{h=0}^{n-1} M_{h+i}\left(f_{h}\right) K^{h} . \tag{25}
\end{align*}
$$

Let $V=\left\{f \mid f: A_{n} \rightarrow A_{n}\right\}$. For $f \in V$, let us define $p_{i}(f)$ and $g_{i}$ such that

$$
\begin{equation*}
p_{i}(f)\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right)=\sum_{h=0}^{n-1} M_{h+i}\left(f_{h}\right) K^{h} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{i}=\sum_{h=0}^{n-1} M_{h+i}\left(f_{h}\right), \tag{27}
\end{equation*}
$$

for $i=0,1, \ldots, n-1$ and $h+i$ taken modulo $n$. By equations (20.1) and (20.2),

$$
\begin{equation*}
M_{h+i}\left(g_{i}\right)=M_{h+i}\left(f_{h}\right) \tag{28}
\end{equation*}
$$

for $h=0,1, \ldots, n-1 ; i=0,1, \ldots, n-1$; and $h+i$ taken modulo $n$. Substituting (28) into (26) yields

$$
\begin{equation*}
p_{i}(f)\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right)=\sum_{h=0}^{n-1} M_{h+i}\left(g_{i}\right) K^{h} \tag{29}
\end{equation*}
$$

for $i=0,1, \ldots, n-1$ and $h+i$ taken modulo $n$.
Using equation (26), we can prove

$$
\begin{gather*}
p_{i}^{2}=p_{i} \quad \text { for } i=0,1, \ldots, n-1  \tag{30.1}\\
\quad p_{i} p_{j}=0 \quad \text { if } i \neq j ;  \tag{30.2}\\
\left(p_{0}+p_{1}+\cdots+p_{n-1}\right)(f)=f, \quad f \in V, \tag{30.3}
\end{gather*}
$$

i.e., $p_{0}, p_{1}, \ldots, p_{n-1}$ are orthogonal projections on $V$, adding to the identity function on $V$, and so generating over $\mathbf{C}$ a circulant algebra.

Also, we derive another formula for the projections $p_{i}(f)$. By equations (26), (23), (8), and (24),

$$
\begin{aligned}
p_{i}(f)\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right) & =\sum_{h=0}^{n-1} M_{h+i}\left(f_{h}\right) K^{h} \\
& =\sum_{h=0}^{n-1}\left[\frac{1}{n} \sum_{k=0}^{n-1} a^{-(i+h) k} f_{h}\left(z_{0}, a^{k} z_{1}, \ldots, a^{(n-1) k} z_{n-1}\right)\right] K^{h} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} a^{-i k} \theta^{-k} f\left(\sum_{h=0}^{n-1} a^{h k} z_{h} K^{h}\right) \\
& =\frac{1}{n} \sum_{k=0}^{n-1} a^{-i k} \theta^{-k} f \theta^{k}\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right),
\end{aligned}
$$

since $\theta$ is a function $A_{n} \rightarrow A_{n}$, namely one-to-one and onto. This result can be rewritten in the form

$$
p_{i}(f)=\frac{1}{n} \sum_{k=0}^{n-1} a^{-i k} \theta^{-k} f \theta^{k}
$$

for all functions $f \in V$. Finally, it can be shown that $f \theta=a^{i} \theta f$ if and only if $f \in \operatorname{Ran} p_{i}$.

Now we want to show that for each $f \in V$ and every $i=0,1, \ldots, n-1$, there exists only one function $g_{i}$ such that equation (29) holds. Indeed, suppose there exists another function $g_{i}^{*}: \mathbf{C}^{n} \rightarrow \mathbf{C}$ such that $p_{i}(f)=\sum_{h=0}^{n-1} M_{h+i}\left(g_{i}\right) K^{h}$ $=\sum_{h=0}^{n-1} M_{h+i}\left(g_{i}^{*}\right) K^{h}$. Since $I, K, K^{2}, \ldots, K^{n-1}$ is a basis of $A_{n}, M_{h+i}\left(g_{i}\right)=$ $M_{h+i}\left(g_{i}^{*}\right)$ for $h=0,1, \ldots, n-1$. By equation (20.3),

$$
g_{i}=\sum_{h=0}^{n-1} M_{h+i}\left(g_{i}\right)=\sum_{h=0}^{n-1} M_{h+i}\left(g_{i}^{*}\right)=g_{i}^{*}
$$

So $g_{i}$ is unique. Thus, there is an isomorphism between functions $g_{i}: \mathbf{C}^{n} \rightarrow \mathbf{C}$ and functions $\sum_{h=0}^{n-1} M_{h+i}\left(g_{i}\right) K^{h}$ in $\operatorname{Ran} p_{i}$.

A result of all this is as follows: let $W=\{f \mid f: \mathbf{C} \rightarrow \mathbf{C}$ with $f$ an entire function $\}$ and $U=\left\{f \mid f: \mathbf{C}^{n} \rightarrow \mathbf{C}\right\}$. Let $I$ be a monomorphism $W \rightarrow U^{n}$ defined by $I(f)=\left(f\left(z_{0}+\cdots+z_{n-1}\right), 0, \ldots, 0\right)$. Let $\bar{\psi}$ be a monomorphism $W \rightarrow V$ defined by

$$
\bar{\psi}(f)\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right)=\sum_{h=0}^{n-1} M_{h}\left(f\left(z_{0}+\cdots+z_{n-1}\right)\right) K^{h}=f\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right)
$$

which follows from equations (13), (14), and (22). Then there exists an isomorphism $\psi: U^{n} \rightarrow V$ defined by

$$
\psi\left(g_{0}, \ldots, g_{n-1}\right)\left(\sum_{h=0}^{n-1} z_{h} K^{h}\right)=\sum_{i=0}^{n-1} \sum_{h=0}^{n-1} M_{h+i}\left(g_{i}\right) K^{h}
$$

such that the following diagram commutes:


## 5. A linear involution

Suppose $g$ is a function $A_{n} \rightarrow A_{n}$ given by

$$
\begin{equation*}
g=\sum_{i=0}^{n-1} g_{i} K^{i} \tag{32}
\end{equation*}
$$

where $g_{i}$ is given by equation (27). Written out, we have

$$
\begin{equation*}
g=\sum_{i=0}^{n-1}\left[\sum_{h=0}^{n-1} M_{h+i}\left(f_{h}\right)\right] K^{i} \tag{33}
\end{equation*}
$$

Let $V$ denote the space of functions $A_{n} \rightarrow A_{n}$. If $f$ is an element of $V$, then there exist a set of $n$ functions $f_{0}, f_{1}, \ldots, f_{n-1}$ mapping $\mathbf{C}^{n}$ into $\mathbf{C}$ such
that $f=\sum_{h=0}^{n-1} f_{h} K^{h}$ (like equation (24)). Let us switch the $h$ and the $i$ in the right-hand side of equation (33). Then let $\varphi$ be the function $V \rightarrow V$ defined by

$$
\begin{equation*}
\varphi\left(\sum_{h=0}^{n-1} f_{h} K^{h}\right)=\sum_{h=0}^{n-1}\left(\sum_{i=0}^{n-1} M_{h+i}\left(f_{i}\right)\right) K^{h} . \tag{34}
\end{equation*}
$$

We use equations (20.1)-(20.3) to show that

$$
\begin{aligned}
\varphi(\varphi & \left.\left(\sum_{h=0}^{n-1} f_{h} K^{h}\right)\right)=\sum_{h=0}^{n-1}\left\{\sum_{i=0}^{n-1} M_{h+i}\left[\sum_{k=0}^{n-1} M_{i+k}\left(f_{k}\right)\right]\right\} K^{h} \\
& =\sum_{h=0}^{n-1}\left[\sum_{i=0}^{n-1} M_{h+i}\left(f_{h}\right)\right] K^{h} \\
& =\sum_{h=0}^{n-1} f_{h} K^{h}
\end{aligned}
$$

i.e., $\varphi^{2}=\varphi^{0}$ (the identity function on $V$ ). Thus $\varphi$ is a linear involution on $V$. Consider the set $B=\left\{a_{0} \varphi^{0}+a_{1} \varphi \mid a_{0}, a_{1} \in \mathbf{C}\right\}$, i.e., linear combinations over $\mathbf{C}$ of $\varphi^{0}$ and $\varphi$ (since $\varphi^{2}=\varphi^{0}$ ). Then $B$ is a $2 \times 2$ complex circulant algebra; $\left(\varphi^{0}+\varphi\right) / 2$ and $\left(\varphi^{0}-\varphi\right) / 2$ are idempotent elements of $B$, i.e., they are projections on $V$. If $f$ is in $V$, then $\varphi(f)=f$ if and only if $f \in$ $\operatorname{Ran}\left(\varphi^{0}+\varphi\right) / 2$; and $\varphi(f)=-f$ if and only if $f \in \operatorname{Ran}\left(\varphi^{0}-\varphi\right) / 2$. Also, $V=\operatorname{Ran}\left(\varphi^{0}+\varphi\right) / 2 \oplus \operatorname{Ran}\left(\varphi^{0}-\varphi\right) / 2$ (a direct sum).

If $n=2$, then $K^{2}=I$. Let $f$ and $g$ be two functicns $\mathbf{C}^{2} \rightarrow \mathbf{C}$. Then

$$
\begin{aligned}
& \varphi\left[I f\left(z_{0}, z_{1}\right)+K g\left(z_{0}, z_{1}\right)\right] \\
& \quad=I\left[f\left(z_{0}, z_{1}\right)+f\left(z_{0},-z_{1}\right)+g\left(z_{0}, z_{1}\right)-g\left(z_{0},-z_{1}\right)\right] / 2 \\
& \quad+K\left[f\left(z_{0}, z_{1}\right)-f\left(z_{0},-z_{1}\right)+g\left(z_{0}, z_{1}\right)+g\left(z_{0},-z_{1}\right)\right] / 2
\end{aligned}
$$

Note that, if $f_{i}$ is a function $\mathbf{C}^{n} \rightarrow \mathbf{C}$ for each $i$, we have by equation (34) that

$$
\begin{equation*}
\varphi\left(f_{i} K^{i}\right)=\sum_{h=0}^{n-1} M_{h+i}\left(f_{i}\right) K^{h} \tag{35}
\end{equation*}
$$

Indeed, since (by equation (11))

$$
\begin{aligned}
q_{i}\left(\sum_{h=0}^{n-1} f_{h} K^{h}\right) & =f_{i} K^{i}, \quad \varphi \text { is an isomorphism } \\
q_{i}(V) & \rightarrow p_{i}(V) \quad \text { for each } i
\end{aligned}
$$

Equation (34) implies that

$$
\begin{equation*}
\varphi\left[M_{h+i}\left(f_{h}\right) K^{h}\right]=M_{h+i}\left(f_{h}\right) K^{i} \tag{36}
\end{equation*}
$$

where $h$ and $i$ vary from 0 to $n-1$ and $h+i$ is taken modulo $n$. Since $\varphi(f)=f$ if and only if $f \in \operatorname{Ran}\left(\varphi^{0}+\varphi\right) / 2$, the function

$$
(1 / 2)\left(\varphi^{0}+\varphi\right)\left[M_{h+i}\left(f_{h}\right) K^{h}\right]=(1 / 2) M_{h+i}\left(f_{h}\right)\left(K^{h}+K^{i}\right)
$$

is a fixed point of $\varphi$.

## Bibliography

1. Philip J. Davis, Circulant matrices, Wiley-Interscience, New York, 1979.
2. Alan C. Wilde, Solutions of equations containing primitive roots of unity, J. Undergraduate Math., 3 (1971), 25-28.
3. Thomas Muir, Theory of determinants, Vol. III, (A 4 vol. treatise; see e.g. the Dover ed. 1960, and Longman ed. 1933).
4. Kenneth R. Leisenring, The bicomplex plane ( $U-M$ manuscript, submitted for publication).
5. Alan C. Wilde, Cauchy-Riemann conditions for algebras isomorphic to the circulant algebra, J. Univ. of Kuwait (Science), 14 (1987), 189-204.
6. Differential equations involving circulant matrices, Rocky Mountain J. Math. 13 (1983), 1-13.
7. Commutative projection operators, Atti del Seminario Matematico e Fisico dell'Università di Modena, 35 (1987), 167-172.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109


[^0]:    Received by the editors December 8, 1987 and, in revised form, April 1, 1988.
    1980 Mathematics Subject Classification (1985 Revision). Primary 15A30; Secondary 15A27.

