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A SIMPLE PROOF OF THE UNIQUENESS OF PERIODIC ORBITS

IN THE 1 : 3 RESONANCE PROBLEM

SHIU-NEE CHOW, CHENGZHI LI, AND DUO WANG

(Communicated by Kenneth R. Meyer)

Abstract. In 1979, E. Horozov considered the versal deformation of a planar

vector field which is invariant under a rotation through an angle 2^/3 (with

resonance of order 3). In his study, the most difficult part of the proof is on

the uniqueness of limit cycles. In this note we give a simple and elementary

(without the theory of algebraic geometry proof of the uniqueness of periodic

orbits in the 1:3 resonance problem.

In [6], Horozov considered the versal deformation of a planar vector field

which is invariant under a rotation through an angle 27r/3 (with resonance of

order 3). The main difficulty in [6] is to prove the uniqueness of limit cycles. In

this note we give a simpler proof of the uniqueness result by using the Picard-

Fuchs equation and a specific technique introduced by Carr, Chow, and Hale

[2] (see Proposition 4). Our proof is elementary and does not need results from

algebraic geometry (see [6]).

Consider a family of vector fields with resonance of order 3. It is well known

that a normal form equation of order 3 is given by the following equation (see,

for example, Arnold [1] p. 293 or [7]):

(1) z = ez + Az\z\   + z  ,

where z ,A G C, and e — e, + ie2 is a complex parameter.  For e = 0, (1)

becomes

2      _2
(2) z = Az\z\  + z .

The following could be found in [6].

Theorem A. // Re A = a # 0, then

(a)   (1) is a versal deformation of (2) with resonance of order 3;

Received by the editors February 5, 1988 and, in revised form, May 8, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 58F14.

Key words and phrases. Bifurcation diagram,   phase portrait,  periodic orbit,  Picard-Fuchs

equation.

Shui-Nee Chow partially supported by DARPA.

©1989 American Mathematical Society

0002-9939/89 $1.00+ $.25 per page

1025



1026 SHIU-NEE CHOW, CHENGZHI LI AND DUO WANG

(b) the bifurcation diagram of (I) consists of the origin and following curves

in parameter space (Figure 1 )."

//± = {e|ei=0,e2^0},

HL± = {ele, = -|e22 + 0(|e2|3) ,s2 ¿ 0} ;

(c) the phase portraits of (I) for e in various regions in parameter space

are shown in Figure 1.

Remarks. ( 1 ) In Theorem A, H and HL are curves along which Hopf bifur-

cation and heteroclinic loop bifurcation occur. (2) In [6] there is a misprint in

the equation for HL (see [6, p. 187]).

K^c

'V-

II ̂ HL+

-III—e1

IV^HL-

JVc
WVr^

IV

(e2>0)

(e2<0)

Figure 1.

We note that limit cycles appear only in regions II and IV in Figure 1. The

difficulty in proving Theorem A is to verify the uniqueness of limit cycles in

these regions. In the following, we give a proof of the uniqueness result. For a

complete proof of Theorem A, we refer the reader to Horozov [6] or Chow, Li,

and Wang [3].

In order to prove that equation (1) is a versal deformation of equation (2),

Horozov [6] considered a planar system with Z3-symmetry in a small neighbor-

hood of the origin z = 0 :

(3)
2       _2 4

z = ¡iz + A(ß)z\z\  +z  +0(|z|),
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where p = px + ip2 is a complex parameter. It is shown in [6] that the bifur-

cation diagram and phase portraits are independent of the higher order terms

0(\z\ ) in equation (3). It is not difficult to show that equation (3) has four

equilibria in a small neighborhood of phase space. Furthermore, one of the

equilibria, z = 0, is always a focus or node, and the others are always saddles

(see Figure 1).

By a symplectic transformation

( x — yj2p cos <p ,

\ y = y/2psin<p ,

(3) is transformed to the following:

i p = pl2p + a(p)(2p)2 + (2p)3/2cos3<p + (2p)5/2Fl(p ,3<p ,p),

1 <p = p2 + b(p)2p - (2/>)l/2sin3ç> + (2p)3/2F2(p,3<p ,p),

where   Fj\   0   =   0,   Fj   is   2n-periodic with respect to   <p,   j   =   1,2,

a(ß)   =   ReA(p),b(p)   =   ImA(p) ,\p\   <   S{ , \p\   <   ôx   and   <5,   >   0   is
sufficiently small.   We suppose a(p) < 0 below.   The case of a(p) > 0 is

similar.

Let

(5)

*' = -aTp7/ß 'ß2 = ~W)Ô'P~Ï a^)pMß) - ~ai,l)Híl)'t^ "^ '

where â and ß are parameters, ô is small and ß G (-co,co). Hence, (4)

becomes

(p = Sß(2p) - ô(2p)2 + (2p)3'2 cos 3g> + S2(2p)5,2Fl ,

1^ = 1+ bô(2p) - (2p)i/2 sin Txp + S2(2p)3/2F2.

Suppose that (po(S , ß), <p0(S , ß)) is an equilibrium of (6) which is different

from the origin. Let

( r= -£-

{        2p"'
{ 9 = % + <p - <po = <p - y/(ß ,S).

Then (6) takes the form

Í r = Sß(2r) - ô(2po)(2r)2 + (2p0)l/2(2r)3/2 cos 3(0 + ¥) + S2(2r)5,2Fl

[9=1+ ô(2p0)b(2r) - (2p0)l,2(2r)1'2 sin 3(0 + ¥) + Ô2(2r)3/2F2 .

Let H(ô ,r ,9) denote the right-hand side of the equation of 9 in (7). We note

that the coordinates of the equilibria of (7) are independent of ô and ß and

these equilibria are: r = 0 and (rk ,9k), where rk -= \ , 9k = n/6 + 2kn/3 ,

k = 0,l ,2.

For ô — 0, we have 2po = 1 and (7) is a Hamiltonian system

Í' = (2r)3/2cos30,

\ 9= l-(2r)l/2sin3ö,
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with the first integral

(9) H(r,9) = r-U2r)3/2sin39.

Figure 2.

The level curves of H = « are shown in Figure 2, where 0 < « < £ . H = 0

corresponds to the equilibrium r = 0, and H = g corresponds to the three

heteroclinic orbits.

Obviously, any closed orbit of (7) must surround the origin and cross the line

segment

L = {(r,9)\9 = n/6,0<r<\}.

Let

HS(r,9)= [ H(ô,r,9)dr.
Jo

Then (7) can be rewritten in the form:

(10)
r = -d-g- + 2Sr[ß - (2p0)(2r) + Ô(2r)3/2F],

V  ° Or ■

We note that H (r, 7t/6) is monotone in r if 0 < r < \ . Thus, we parame-

terize L by H(r ,n/6) = h . Let T be a trajectory of (7) starting from a point

on L and later intersecting the half line 9 = 5n/6. We denote by T(S , « , ß)

the part of T which lies between the half lines 9 = n/6 and 9 = 5n/6. Since

(7) is invariant under a rotation through an angle 27r/3, T is a closed orbit of

(7) if and only if

(11)
/     (Jn» m ,ß) \

djf
dt

dt = 0.
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It is easy to obtain from (10) that for ô / 0 (11) is equivalent to

(12) <^S,h,ß)=f r[ß-(2p0)(2r) + o(2r)3,2F]d9 = 0.
Jr(â ,h ,ß)

Let Th be the part of level curve H = h,0<h<l/6,n/6<9< 57r/6.

Define

Ik(h)= [ rkd9,       k= 1,2,3.
Jr„

In terms of Ik(h)   (k = 1,2), we have

(13) <P(0 , « , ß) = [ r{ß - If) d9 = /?/, (A) - 2I2(h).
Jr,,

Obviously, /,(«)> 0 for 0 < « < | and

limito.
A-.o/,(«)

Let

"*' = /$;    os*4
By using similar arguments as in [2, 4, 5, 8, or 9] one obtains that the unique-

ness of limit cycles of (7) is equivalent to the monotonicity of p(h), 0 < « < ¿ .

We will prove the monotonicity of p(h) in Proposition 4 below. The following

lemmas are needed.

Lemma 1. p(h) satisfies the following equation

(14) 9«(6« - l)p'(h) = -12/72 + (28« - <p(h) + 9)p + 48«2 - 18« + 6htp(h),

where 0 < « < | and

^(«) = 6«2(6«-l)^||.

Proof. Suppose that the function r = r(9 ,«) is defined by H(r ,9) = « for

ti/6 < 9 < 5n/6 and 0 < « < |. From (9) and H(r, 9) = « , we have that

(15) |J =--L-= -^—>0,       0<«<±.
9«      1-V27sin3ö     3«-r        ' 6

The above expression is positive because 0 < r < j . Hence,

r       k
l'k(h) = 2k      -¿—dB.

Obviously,

rk(3h-r) Aa     3«r,T     ,1   N Í \JW   —   ' J/l J«    r/

In particular

[ /, = \hl[ - \I'2,

(16) 1 / -thl'-W( l2 ~ 4nl2       6Jy
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From (9), we have

73(«)= / r3d9=9-[ iH=^d9 = -lf5,/\r-h)2d(cot9).
Jr„ 8 Jrh sin2 36) 8 Jn/6

Integrating by parts and using (15), (9), and (8), we have

1 [   r~h   (2r)3/2c™

3_ 4]Th sin30  l-v/27sii

-u,
r-h   (2r)3/2 cos2 39 ,a

-.-u9
sin 30

" 9{r " H)2] d9
3«

= -4/3 + (f - 12«)/2 + (\h - 36h2)I{ + (54h3 - 9h2)l\.

Hence

(I7) h = (tö - Th)h + (roh - TAV, + (fh' - l^V'v
Substituting (17) into (16), we have

(4I^6hl[-l'2,

\ 48/2 = (18« - 48«2)/J + (-9 + 44«)/2 - 24«2(6« - 1)/".

Equation (18) is equivalent to

f 9A(6A- l)l\ = (-9 + 44«)/, + 12/2 + 6«2(6«- 1)/",

X 9«(6« - l)/2 = (-18« + 48A2)/, + 72«/2 + 36A3(6A - 1)/" ,

for 0 < « < I. By (19) and the following

Ah) = t^AzLL
'\

we obtain (14). This proves the lemma.   G

Lemma 2.  limh_t0p'(h) = 1.

Proof. As A - 0, /, = O(h), I2 = 0(h2) (see (15)). Hence, p(h) = 0(h) and

/¡'(A) = 6Í  ^!±d9 =
1 hh (3A - r)3

0(|Af1/2)

/;>)=12r^AK5^^ = w_3^
Jrh       (3A - r)

Thus, <p(h) = 0(|A|'/2),  tp'(h) = 0(|A|~1/2).  Using the above estimates and

L'Hospital's rule, we obtain from (14) \imh^0p'(h) = 1 .   o

Lemma 3. p(|),= ^, p'(\) = 2v/51n((3 + ,fi)/2) - 4.

Proof.  r,,6 is a curve given by {(r,9)\\/2rsin9 = 1/4, n/6 < 9 < 5n/6}. A

direct calculation shows
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and

Hence

-üln—2-l

p'(1/6)

P(VQ

^1-^2

/- 1

A=l/6

A=l/6
16

2V51n^-4.   D

Proposition 4. p'(A) > 0 for 0 < A < ¿ .

Proof. We will prove that if there exists A0 € (0,1/6) such that

//(A0) = 0, then p"(hQ) > 0. This is a contradiction since p(0) = 0,

p'(0) = 1 (Lemma 1).

Let

0<A<i.0(A) = /2(A)//¡(A),

Then p(h0) = Q(h0) and

p"(h0) = (l[(h0)/Il(h0))Q'(h0)

provided p'(h0) = 0 (see Carr, Chow, and Hale [2]).

From the first equation of (18), we have

6A/;' = /;'-2/;.

Hence
/"       1   (l2

,t-«Vt 2) = hW-2\
This implies

Q'(h) s.qI-!í-.U
T      Ti2     j,

Q_
6A (6A-ß)-£ + 2

The first equation of (18) implies 6A - Q = 41 {¡l\.

If p'(h0) = 0 (0 < A0 < i), then Q(h0) = p(h0) > 0 and

I'M     4(Ao) '
Thus

Q{h) (2i2i;tfw-IF ^+1 >0
h=h0

because

M - / r efe > 0,
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,Ä)i/ *IÇh±Aie>o.
2    °      K   (3*„ - rf

The fact that along Vh ,  3A0 - r > 0 can be found from (15).  This proves

Proposition 4.   D

Remark. We note that all the above discussions are independent of the higher

order terms 0(\z\ ).
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