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HAUSDORFF MEASURES AND SETS OF

UNIQUENESS FOR TRIGONOMETRIC SERIES

R. DOUGHERTY AND A. S. KECHRIS

(Communicated by J. Marshall Ash)

Abstract. We characterize the closed sets E in the unit circle T which

have the property that, for some nondecreasing h: (0,oo) —» (0,oo) with

h(0+) = 0 , all the Hausdorff /¡-measure 0 closed sets F C E are sets of unique-

ness (for trigonometric series). In conjunction with Körner's result on the exis-

tence of Helson sets of multiplicity, this implies the existence of closed sets of

multiplicity ( M-sels) within which Hausdorff /i-measure 0 implies uniqueness,

for some h . This is contrasted with the case of closed sets of strict multi-

plicity ( A/o-sets), where results of Ivashev-Musatov and Kaufman establish the

opposite.

A Hausdorff determining function is any function h : (0 , oo) —► (0, oo) which

is nondecreasing and satisfies h(0+) = 0. A subset E of T (the unit cir-

cle, viewed here as R/2nZ) has Hausdorff h-measure 0 if for every e > 0

there is a sequence {In} of open intervals (arcs) in T with E ç \Jn En and

Z)^(l^sl) < e • (Here |/J = (arc length of I„/2n.) It is a well-known theorem

of Ivashev-Musatov [2] that metric thinness in the form of Hausdorff «-measure

0 cannot imply uniqueness for trigonometric series. More precisely, for any «

as above there is a closed set E of Hausdorff «-measure 0 which is of restricted

multiplicity (we will give a review of terminology below). Kaufman [3; see also

4, VIII.3.3] extended this result by proving that, for any « as above, any closed

set of strict multiplicity has a closed subset of Hausdorff «-measure 0 which is

still of restricted multiplicity. Later Kaufman asked (in a private conversation)

whether the same holds for ordinary multiplicity. The main result of this paper

gives a negative answer to Kaufman's question, and provides a characterization

of those closed sets which, for some « , contain no closed subsets of Hausdorff

«-measure 0 which are of multiplicity.

We now give a brief review of the notation, terminology, and results we need;

this material all appears in Kechris-Louveau [4]. Let K(T) be the collection of

closed subsets of T. Denote by U the collection of sets E e K(T) which are of

uniqueness (i.e., every trigonometric series converging to 0 on T\E is identically

0), and let M = K(T)\U (the collection of closed sets of multiplicity). This is
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the classical definition. It can be reformulated in the theory of distributions as

follows: A closed set E e KÇ[) is in M if it supports no non-0 pseudomeasure

whose n th Fourier coefficient tends to 0 as n —» ±00. Let U0 ç K(T) be the

collection of sets of extended uniqueness (i.e., those which support no proba-

bility measure whose « th Fourier coefficient tends to 0 as « —► ±00 ) and let

M0 = K(T)\U0 be the collection of closed sets of restricted multiplicity.

Piatetski-Shapiro gave a characterization of sets of uniqueness in terms of

Banach spaces. Let A be the space of continuous complex functions on T with

absolutely convergent Fourier series (which is isomorphic to lx(Z) = c0(Z)* ).

For E e K(T), let 1(E) (J(E)) be the set of members of A which vanish

on E (on a neighborhood of E ). In general, 1(E) # J(E). Then E is in

U iff J(E) is weak "-dense in A (originally in [7]; see also [4, V.4.1]). Let

Ux be the collection of E e A^(T) such that 1(E) is weak*-dense in A ; then

U Ç Ux C U0, and Körner showed that Ux ̂  U (originally in [6]; see also [4,

VII.3]).

The sets U and U0 are closed under countable unions within Ä^(T) (Bari's

Theorem; see [4,1.5.1 and II.5]), but Ux is not [4, VI.3.6]; let U* be the set of

E e K(T) which are countable unions of sets in Ux . Piatetski-Shapiro showed

that every set in £7, (and hence every set in U* ) is a countable union of sets

in U'x , where E e AT(T) is in U[ iff 1(E) is sequentially weak "-dense in A

(originally in [7; see also 4, VI.2.3]). One has now the following analogue of

Kaufman's result: if « is a Hausdorff determining function and E e K(T)\UX*,

then there is F ç E in M with Hausdorff «-measure 0 [4, VIII.4.8]. (This is

indeed a corollary of a much more general result: If E e K(T) is such that for

every open V CI with £nF/0 we have E n V £ Ux , then every dense

Gs subset of E contains a closed set F in M.) Kaufman asked whether one

can replace E e K(T)\U* by E e M ; we will answer this question negatively

by showing that the above property characterizes U*.

Theorem. A set E e AT(T) is in U* iff there is a Hausdorff determining function

h such that every closed subset of E of Hausdorff h-measure 0 is in U.

One direction of this has already been noted; for the other, we must show

that for every E e U* such an « exists. We will use the idea of a construction

from Debs-Saint Raymond [1].

Let S be a countable collection of infinite sequences {an}^Lx of positive

reals. We say that E ç T is S-small if, for each {an} e S, there is a sequence

{/n} of open intervals such that E ç \Jn I and |/J < an. Note that, for

every Hausdorff determining function h , there is a collection S such that any

.S-small E Ç1 has Hausdorff «-measure 0; just let the m th sequence in S be

{a{nm)} where 0 < h(a{nm)) < 2~n~m . Conversely, we have:

Lemma. Given any S as above, there is an h such that any £CT which has

Hausdorff h-measure 0 is S-small.
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Proof. Let the mth sequence in 5 be {a„ }, and choose « so that, for all

« and m, h(a'^")) > l/mn. Suppose E has Hausdorff «-measure 0. Let

{/¿J be open intervals with E ç \JkIk and *52kh(\Ik\) < l/m. We may

assume |/,| > \I2\ > ••• . Then |/J < an , because \In\ > an would imply

h(\In\) > h(an) > l/mn and «(|/„|) > A(|/2|) > ■•■ > h(\In\) > l/mn, so

J2k k(\h\) > " ' (l/mn) = l/m, a contradiction. So E is S-small.

So assuming E e Ux , it is enough to find S so that

(*) F CE ,F closed , F S-small => F e U.

Since U is closed under countable unions, it is enough to show (*) assuming

E e U'x. So suppose fm e 1(E) and fm -^w   1.

Lemma. Let f e A, e > 0. There is a sequence {an} of positive reals such that

if F ç Z(f) = {x € T: f(x) = 0} and F ç |J„ In, where In are open intervals

with \In\ < an, then for some g e J(F), \\f - g\\A < e.

Granting the lemma we can complete the proof as follows: Let {a„}^x

be the sequence given by the lemma for / = fm,  e = l/m.   If the mth

sequence in S is {a^} , and F ç is is S-small, then there is gme J(F) with

\\fm - gm\\A < l/m. So gm -*"1 1 and hence J(F) is (actually sequentially)

weak "-dense in A , so F e U.

Proof of the lemma. Let xx s be the usual trapezoidal function, defined to be

1 on [x - ô ,x + ô], 0 outside (x -2ô ,x + 2ô), and linear on [x - 26 ,x - S]

and [x + ô , x + 2ô]. For each g e A , let

Ngie) = minlN>l:   £ \g(n)\ < e
{ \"\>N

It is not hard to show that

N^-{e)^ NAw) + NÁñgT^
\¿\\S2\\a/ \¿\\S\\\a

for any gx,g2 e A.   We will now show that, if g e A,  ô e (0,1), and

g(x) = 0, then

¿  <   ,.     ..7       ..   .   .1   =>  HSTr  A\a   < 8fi* " —I^— => II or ^ Ö*
||2     at /-\2 "S   x,S»A

for some fixed constant K. What is at issue here is that "points obey spectral

synthesis." For the reader not familiar with these ideas, we provide the de-

tails. First recall the result of Bernstein that, for any trigonometric polynomial

Q of degree at most TV, Ho'll«, ^ ^TVHßH^. (One proves this by showing

that Q' is the convolution of -2NQ with KN_x(y)sinNy, where KN(y) =

E|>|</v(l-L/1/(^+l))^U> is the Féjer kernel.) Also, \\tx5\\<3 [4, p. 58] and,
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for any / e C(T) with / e L2(T), \\f\\A < |/(0)| + C||/||L2 for some fixed

constant C [4, II.2.1]. Now let

Q(y)=  Y. è(n)e'ny + Y. S(nWnx ;

n<\N\ n>\N\

then Q is a trigonometric polynomial of degree < N, WQW^ < \\g\\A,

U-Q\\a < 2Ew>N\Ê(n)\, \\grxó\\A < \\QTxJA + \\g-Q\\A\\xxJA,

W&xAa $ WQ'xA + C\\(Qxx¿)'\\2, \\Qxx,\\x < (4r5/27T)||C2||0o,
161 < 2¿||Q'||0O on [X-2S.X + 20] (since Q(x) = 0), (QxxS)' = Qx'x â +

Q\,S> \\Q<,sh< Kxô-l/2supy€[x_2Sx+2â]\Q(y)\ < 2jg|ß'||00>/?, and

WQ'tjc g\\2 ̂  ^llö'lloo^ ; putting these together gives the desired result.

It follows that one can inductively define ax ,a2, ... , such that, for any

xx,x2,---   e   Z(f),  if we let   fQ   =   f,   fx   =   fQ ■ (1 -xx¡a¡),   f2   =

/.•(1-Tx2,Û2) = /o-(1-^l,ûl)-(1-Tx,,a2)'---'/«+l=/„-(1-^+i,a„+1)'--- .

then\\fn-fn+x\\A<e/2n+l.

If now F ç Z(f) and F ç (J„ ln , where In is an open interval with |/J <

an, let k be large enough so that F ç \Jn<k In . We can also clearly assume

F n /„ ^ 0 for n <k . Choose xn e F n In ."Let

Jn = (Xn-an>x„ + a*)-

Then xneZ(f) and F C \Jn<kJn .  Let * =/• (1 - T,i>ai)(l - t^)---

(1 - tXaA).   Then  g = 0 on lj„<^„, so  g € 7(F), and  \\f - g\\A <

2-»„ Il7„ _ 7n+ilU < e-
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