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ON THE RELATIONSHIP BETWEEN AP, RS AND CEP

KEITH A. KEARNES

(Communicated by Donald Passman)

Abstract. We prove that in a residually small congruence modular variety the

amalgamation property implies the commutator condition R. A consequence of

this is that, for all congruence modular varieties, AP+RS implies the CEP. We

also show that this implication holds for any variety of semigroups.

1. Introduction

In W. Taylor's survey of equational logic [14] he states that, for varieties

of algebras, the only possible relationship between the amalgamation property,

residual smallness and the congruence extension property is the implication

AP+RS => CEP. Indeed, it is easy to find examples of congruence distributive

varieties exhibiting any of the seven combinations of these properties other than

the one this implication would exclude. Here is a table of examples where we

have chosen the varieties to be finitely generated when possible

Properties

AP + RS + CEP

AP + RS + -CEP

AP + -RS + CEP

AP + -RS + -CEP
-AP + RS + CEP

.AP + RS + -CEP

nAP + -RS + CEP

hAP + -RS + -CEP

Varieties

Distributive Lattices

Heyting Algebras

Lattices

^(F4,F8)

T(M.)

Cylindric Algebras (of a fixed dimension)

Modular Lattices

In this table, 2^(F4 ,Fg) is the variety of commutative rings that is generated

by the 4-element field and the 8-element field. ^(M}) is the variety of lattices

generated by the 5-element simple lattice.

Until recently, there was no proof of the implication AP+RS => CEP, even

for congruence distributive (CD) varieties. In fact, no progress was made on

the problem until after Emil Kiss proved (in [9]) that for congruence modular
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varieties, CEP =*• C2+R. Here, C2 and R are congruence conditions involving

the modular commutator. They are

C2: [x ,y] - x • y ■ [1.1], and

R:  IfB<A,    then[lB,lB] = [lA,lA]|B.

This suggested a possible program for proving AP+RS => CEP for congruence

modular varieties. Three statements needed to be proved

Conjecture 1. CM+AP+RS => C2,

Conjecture 2. CM+AP+RS =>■ R, and

Conjecture 3. CM+AP+RS+C2+R =► CEP.
C. Bergman began this line of investigation with [1]. The principal result of

that paper was that CM+AP+RS+C2+R+F4 =>• CEP. Here, F4 is the condition

that the free algebra on four generators in the variety "V is finite. Each of

the properties in this implication is insensitive to the addition of constants to

the language of "V except F4, which could be taken as a hint that a proof

without finiteness assumptions (i.e., a proof of Conjecture 3) might be possible.

Such a proof, and a proof of Conjecture 1, were discovered by R. McKenzie.

The proofs of both of these results can be found in [3]. The purpose of the

next section is to prove Conjecture 2. The main result of §3 is to show that

AP+RS =>- CEP for all varieties of semigroups or monoids.

Our notation for universal algebra is fairly standard and the reader is referred

to [12]. We will use some additional notation with respect to congruences and

congruence lattices. We depart from [12] by using the symbols "+" and "•"

for the lattice operations "join" and "meet". If /: B —► A is a homomorphism

and 8 is a congruence on A, then we will use both 0|B and /~ (8) to denote

the congruence on B defined as {(x ,y) eBx B|(/(x) ,f(y)) e 8} . If a is a

congruence on A( and A( is the j'th factor in the product n,e/ A- > then we will

write a¡ to denote the congruence n~ (a) where n¡ is the canonical projection

homomorphism of n-e/ A • onto its z'th coordinate. The only exception to this

last rule is then a is the zero congruence of A., in which case we write n¡

instead of 0(. We may abbreviate n¡ • n   by rç,    •

For the notation and basic results of modular commutator theory the reader

is referred to [6].

A variety of algebras 'V is said to have the amalgamation property (AP) if

whenever we have embeddings /,:A-»B and gx : A —► C we can find an

algebra D and embeddings f2, g2 which complete a commutative diagram

B

A . D
\^, siyr

C

y is residually small (RS) just in case it has a bound on the size of its sub-

directly irreducible members. 'V has the congruence extension property (CEP)
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only if for every embedding f: B —► A and every congruence 8 e ConB there

is a congruence ip e Con A such that y/\B = 8 .

We will abbreviate the hypotheses that a variety W is congruence modular

or that 'V has the amalgamation property or that every algebra in 'V satisfies

the congruence conditions C2 and R etc. by writing " 'V 1= CM " or " 'V N AP "

or " T t= C2+ R" etc.

2. Congruence modular varieties

Two concepts will be used throughout this section.

Definition 2.1. An algebra A is an essential extension of B (or B is essentially

embedded in A) if and only if B is embedded in A and for all 8 e Con A we

have the property that 8\B = 0B  implies that 8 = 0A.   We will write this as

B<essA.

Definition 2.2.  A is finitely subdirectly irreducible if and only if for all pairs of

congruences a , ß e Con A satisfying a • ß = 0 we must have a = 0 or ß = 0.

We will write A       to mean that A is a finitely subdirectly irreducible algebra.

If A is also nonabelian, then we will write A

Prime algebras are those that satisfy the congruence condition that [a , ß] = 0

if and only if a = 0 or ß = 0. Nontrivial prime algebras are always nonabelian

and finitely subdirectly irreducible. In the presence of C2 the converse is true,

the NAFSI algebras are precisely the nontrivial prime algebras.

We have the important result:

Theorem 2.3 (Taylor [13]). Every algebra in a residually small variety can be

essentially embedded into another algebra which is in the variety and which is

maximal with respect to <ess.   D

An element x of a lattice L is said to be neutral if and only if for any two

elements y , z e L, the sublattice generated by x , y and z is distributive. In

fact, in the presence of modularity, neutrality follows from the weaker assertion

that xj[y + z) — x-y + x-z for all y , z e L (see Theorem 4 and Corollary 8

of §111.2 of [7]).

Lemma 2.4. Assume that W N CM + C2 and that A0 , A, e 'V. Then,

(a) 8 < [1A , 1A ] implies that 8 is a neutral element of Con A0.

(b) 8 < [1A xA , 1A xA ] implies that 8 is a product conruence on A0 x A,.

Proof. For part (a), the additivity of the commutator along with two applica-

tions of C2 yields

8 ■ (a + ß) = 8-[1,1]-(a+ ß) = [8,a + ß] = [8,a] + [8,ß]

= 8-[l ,l]-a + 8-[l ,l]-ß = 8-a + 8-ß.

By [7], 8 is neutral.

In (b) we use the fact that 6 is neutral to write 8 = (rj0 + 8)• (?/, +8) = a0-a\

for appropriate a e Con AQ , a e Con A, .   D
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We begin a sequence of lemmas which culminate in the proof that, in the

presence of CM+AP+RS, B <ess anafsi implies that B is a NAFSI algebra.

One may skip directly to the proof of Theorem 2 if one assumes this fact.

Lemma 2.5. Let T t= CM + C2 . Assume that Bn <     ANnAFSl and that B, <
U —ess      0 1  —ess

A,. Then B0xB, <ess A0 x A,. In particular,

(a) B <     ANAFS1 =» B x B <     A x A and,
v   '        —ess —ess '

(b) B<essAwra^BxC<essAxC.

Proof. Suppose ip e ConA0 x A, satisfies ip\B xB = 0. Since ^-[1,1] is a

product congruence on A0xA, and y-[l > 1]|B xb = ^ we must have ip-[l , I] =

0. By the neutrality of [1,1], this means that r¡0 - (r¡Q + \p) ■ (nQ + [1 ,1]).

However, AQ is a NAFSI algebra. Since A0 is nonabelian, r¡0 < t]0 + [ 1 ,1 ].

A0 is FSI, so we are forced to conclude that nQ = nQ + ip. This shows that

V < *10 ' so V must he of the form nQ- ax for some congruence a e Con Ax

that satisfies a\B =0. But B( <ess Ax so the only suitable choice is a = 0.

Therefore ip = r]0-nx — 0. The special cases (a) and (b) are direct consequences

of the Lemma.   D

Lemma 2.6. Assume that "V t= CA/ + C2, and that \NAFSI an¿ c are members

of 'V such that A is maximal with respect to <ess and A x A <ess C. Then

there exists \p e ConC such that *p\AxA = t]0 x    or nfxA.

Proof. Embed A into A x A via the diagonal homomorphism, ô. Choose

\p e ConC maximal with respect to the property that ip\A = 0. Because of

the maximality condition on \p , the induced homomorphism from A to C/y/

given by the composition

A^AxAmC-^C/^

is an essential embedding. The hypothesis on A implies that this embedding is

an isomorphism. Hence, Ax A/í¿/|AxA = A. Writing ip for ^|AxA, this shows

that ip is a meet irreducible element of Con A x A that is not above [1 ,1 ].

But (ip + t]0) .((¡p + r]x) ■ (ip + [1^1])) = (ip + t]0). (ip +j{ . [1,1]) Jf, ¿ó for
some / = 0 or 1 we must have ip = ip +1¡¡, i.e. that ip >n¡. If ip > r¡¡ then

\p\K = ip\A > 0, which is false, so ip = r\i...     D

Lemma 2.7. Assume that 'V 1= CM + AP + RS. If B <ess anafsi where A e

"V, then B is nonabelian.

Proof. If E is an essential extension of a NAFSI algebra F, then E is a NAFSI

algebra. The verification that E must be a NAFSI algebra is as follows. First

E must be nonabelian because it possesses a nonabelian subalgebra (e.g. F).

Second, if there are nonzero congruences a and ß on E which intersect to

the zero congruence, then a|F and ß\F are nonzero congruences on F which

intersect to the zero congruence, contradicting the assumption that F is FSI.
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By the previous observation, and referring to Theorem 2.3, we see that we

may assume that A is maximal with respect to <ess. We may also assume that

T \= C2 by Theorem 1 of [3].

Assume that B is abelian and we will argue to a contradiction. Let Bv be

the linearization of B, i.e. Bv = (BxB)/A, ( where A, , is the congruence on

BxB generated by the set of all pairs ((x ,x), (y ,y)) for x ,y e B. According

to Proposition 9.8 of [6], since W is congruence modular and B is abelian,

the maps !0:BxB^BvxB: (x ,y) *-* ((x ,y)/A,y) and l,:BxB -»

B x Bv : (x ,y) •-> (x , (x ,y)/A) are isomorphisms. Let / be the embedding of

B into A that is given. Let h0 be the map from BxB to Bv x A that is the

composition (idB x i) oA0 . Similarly, let hx = (i x idB ) o kx . By Lemma 2.5

the maps i x i, hQ and hx are all essential embeddings. Find an algebra C

and embeddings which complete the following diagram

Ax A

BxB

Choose t\ e ConC maximal with respect to the condition that £|BxB = 0.

We can replace C by C/Ç = D and complete the previous diagram in such a

way that all maps are essential embeddings.

By Lemma 2.6 there is a ip e ConD such that <p\AxA = >10 x    or t]x *   , say

<p\AxA = % XA (tne other case is similar). Let ip = ip\B xA. Then ^|BxB =
AxA, BxB BvxA, A ByxAi BxB r ■        rv j

?o Ibxb = % , ?0 |BxB = A, , , nx |BxB = nx , so for v = 0 and

for j = I we have h^ (ip • >?, v* ) = 0BxB . Since h0 is essential, ip -n vX =

0BvXA for each j. A fortiori we have that the product congruences (<p-[l , 1])-^

are zero, so ip • [1 ,1] = 0 by Lemma 2.4. Using the neutrality of [1,1] we

find that rjx - (rjx + ip) ■ (?/, + [1 ,1]). But r\x is a meet-irreducible congruence

of Bv x A that is not above [1 ,1], since Bv x A/nx = A. Hence, ip < r¡x .

Restricting these two congruences to BxB we learn that r]Qx < r¡x x , forcing

the conclusion that B is trivial. This is a contradiction of our hypothesis that

B<essANAFSI,
extensions.   D

B <ess A A     , for trivial algebras can only have trivial (hence abelian) essential

Lemma 2.8. Assume that <V N CM + AP + RS. // B0 x B, <ess ANAFSl then

either B0 or B,  is trivial.

Proof. We may assume that A is maximal with respect to <ess. Let / denote

the embedding of BQ x B, into A that is given. Also, let A denote a copy of

A that we do not want to confuse with the original.
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Find an algebra D and embeddings to complete the diagram

AxA

C = B0xB,xB0xB1

AxA

Here fx(a,b,c,d) = (i(a ,b) ,i(c ,d)) and gx(a,b,c,d) = (i(a,d),
i(c , b)). By Lemma 2.5(a) these maps are essential embeddings.

Choose t\ e ConD maximal with respect to the condition that ¿;|c = 0C.

We get a diagram

AxA
U

C *Z _        D/£ = F

AxA

where all maps are essential embeddings. Use Lemma 2.6 to find a ip e Con F

such that g~2 (ip) = nAxA or rçAxA . The argument is similar for either case so

say that ~g2(ys) = %*   ■ Let ip = f2  (\p) and set ß = t]Qx   + ip ■ t]xx   .

Claim.  fx-\ß) = r1o-

Proof of Claim. Clearly, f~\ß) D /^(^V/T'^O = i/^. + ̂ j =

nQ , so we only need to show that /j (ß) C n0 . Let (x ,y) be an arbi-

trary element of fx~l(ß). Write the coordinates as x = (a ,b ,c ,d), y -

(a ,b' ,c' ,d')eC = B0xBxxB0xBx. Then (/, (x) ,fx(y)) e % + ip-nx . Since

t]0 permutes with ip■ t]x (see Exercise 5.4 of [6]), there is a pair (u ,v) e Ax A

suchthat fx(x) = (i(a ,b) ,i(c ,d))tj0(u ,v)ip ■ nx(i(a ,b') ,i(c ,d')) = fx(y).

Hence (u,v) = (i(a,b), i(c ,d')) e im/, , implying that (x ,y) e f\~l(%) +

By similar arguments we can let y = rçAxA + ip • t]0 x and get that fx (y) =

f73 . Let a denote the congruence on A that corresponds to the congruence

ß/nQ on (AxA)/t]0 under the natural isomorphism (AxA)/r70^A. Similarly,

let a denote the congruence on A that corresponds to the congruence y/tjx

on (A x A)/r]x . From what we have said about ß and y we see that i~ (a) =

f7o°xBl  and  i~\a) = nxB°xBi , so  i~\a ■ a) = 0B xB .   Since  i is essential,

a ■ a = 0A .  A is finitely subdirectly irreducible so either a or a   equals 0A .

Both of these cases are similar so let's assume that a = 0A . Then, 0B xB  =

i~ (a) = r]0"x ' and the conclusion is that B, is trivial.   D

Lemma 2.9. Assume that T 1= CM + AP + RS. If B <ess a^57 then B is a

NAFSI algebra.
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Proof. By Lemma 2.7, B is nonabelian. Assume that B is finitely subdirectly

reducible. Then there exist a, ß > 0 in Con B such that a ■ ß = 0. We

may assume that a < [1 ,1], for, if a • [1 ,1] ^ 0, then we may replace a by

q-[1 ,1]. On the other hand, if a-[I , 1] = 0, then we may replace a by [1,1]

and replace ß by the old choice for a . Now we may assume that ß is equal to

(0: q) , the centralizer of a . This is because 0 = a-ß iff 0 = [1 , l]-a-ß — [a , ß]

iff ß < (0: a). Hence, if there is some congruence ß satisfying ß > 0 and

a • ß = 0, then (0: a) is another (in fact, the largest) such congruence.

Find an algebra C and embeddings that complete the following diagram

b0xb;

B/q x B/ß

The map gx is the homomorphism that is the natural map in both coordi-

nates. The map i is the embedding of B into A that is given.

Choose £ e ConC maximal with respect to the condition that £|B = 0B.

Let I = i|
BnXB,

In ConB0 x B, , ¿¡ ■ [1 ,1] is a product congruence. Say

that £ • [1 ,1] = y0 • y\ where y e ConB0 and y e ConB, . Pulling these

congruences back to B we get y0\B = y > a and y'x\B = y' > ß. Now,

a ■ y' < y ■ y' = 0 so y < (0: a) = ß. Thus, y — ß. In ConB0 x B,

we get that t\ • [1 ,1] < y\ = t]x , so we can use the neutrality of [1,1] to

deduce that r¡x = (t]x + ¿¡) • (t]x + [1 ,1]). However, a • (t]x \B) = a • ß = 0 and

q:-(í7, +[1 ,1])|b > or-[lB , 1B] = a, so necessarily a-(»7, +£)|B = 0. This gives

us a sandwich: ß = r¡x\B< (t]x + Ç)\B < (0: a) = ß which forces rjx +Ç = nx .

Hence, ¿¡ = t0 • r\x for some t e ConB0 .

We get a commutative diagram in which all maps are embeddings

A.

(B0/r) x b;

The map i is essential by hypothesis, / is essential because of the choice of

c; and g2 is essential because ¿?2°^i = f°i is- Since A is a NAFSI algebra and

/ is essential, C/£ is a NAFSI. By Lemma 2.8, either Bq/t or B, is trivial.

But then the natural mapping of B onto either B, = B/ß or B0/t = B/(a+<^|B)

is an embedding. This leads to the contradication that either ß or a = 0.   D

We can now prove the main result of this section.
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Theorem 2.10. Assume that T~ t= CM + AP + RS. Then T~\= R.

Proof. Assume not. Then there exists AeT and a subalgebra B < A such

that [1A , 1A]|B > [1B , 1B]. We will use the abbreviations a = [1A , 1A]|B and

ß = [lB,lB] in this proof. Let A, a denote the congruence on BxB generated

by all the pairs ((x ,x), (y ,y)) for all x and y for which (x ,y) e a . Let C

denote the (abelian) algebra B/[1B , 1B]. In ConB x C we have the following

sublattice

Q

The congruence A is the projection of the congruence Ax e ConB x B onto

BxC. That is, A corresponds to Ax a/('"{)-ß\) under the natural identification

of (BxB)/(nQ-ßx) with BxC.

The only mystery in the previous diagram is the placement of A. In Con BxB

we have ».-A, n = w.-[l , a], = r].-ßx_j by C2. Further, arguing by generators

we see that n. + A, n = a . Using modularity this is already enough to show

that A, is a common complement to q0 • ßx and a, • ß0 in the interval

I[ß0 ■ ßx , a0 • a, ] of Con BxB (or that A is a common complement to a0 • rjx

and a, • ß0 in the interval I[ß0 • 17, ,a0 ■ a,] of ConB x C).

Let D denote the (abelian) algebra (B x C)/A and let i denote the inclusion

of B into A. Find an algebra F and embeddings that complete the following

diagram:
AxC

BxC

AxD

Here fx = ix idc and gx (b ,c) = (i(b), (b , c)/A). gx is an embedding since

kerg, = VA = 0.
Choose (c ,d) e t]0- ax - 0BxC and find t g Con F maximal with respect

to the condition that (c ,d) 0 t|BxC + [1BxC'1bxc1- This is possible since

(c ,d) £ [1 , l]  (which follows from the fact that r¡0 • a, • [l , 1] = 0 ).   Now,

Hf . MlßxC  ^  HaxC ' ^xcJlßxC + [!axD ' 'AXD3IBXC  = a0 * ̂ 1 + Q0 " A =  a0 '
a, 2 ti0 • «, .  Since (c ,d) e r¡0 • a,  we conclude that x 2 [1F , 1F] •  Further,
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t is meet-irreducible, since if y, y > x then (c, d) is an element of both

y|BxC + [1,1] and /|BxC[l , 1] by the maximality condition on x. Therefore,

using the neutrality of [1,1], (c,d) e (y\BxC + [1 ,1]) • (y'|BxC + [1 ,1]) =

y • y'\BxC + [1,1] which shows that y -y' > x. Thus, F/t is a NAFSI algebra.

If we let f = tIbxc then we have an induced embedding:

(B x C)/f <ess (F/r)NAFSI.

This embedding is essential because of the maximality condition on i. By

Lemma 2.9, this means that (B x C)/x is a NAFSI algebra,, i.e. that t is

a meet-irreducible congruence of B x C that is not above [1,1].   However,

x = (x + [I , I]) ■ (x + r]0 ■ ax), forcing x - x + t]0 ■ ax . This proves the final

contradiction that (c, d) e r¡0 ■ a, ç f ç x.   D

Corollary 2.11. Let 'V be a congruence modular variety. Then 'V satisfies the

implication AP + RS => CEP .    o

3. Varieties of semigroups

Congruence modular varieties and varieties of semigroups are at opposite

ends of the spectrum determined by congruence conditions. On the other hand,

varieties of semigroups are perhaps the most studied examples of varieties that

are not congruence modular. For this reason, varieties of semigroups seem

a good place to test the implication AP+RS =*• CEP. Fortunately for us, re-

searchers have already completely determined which varieties of semigroups

are residually small [11] and which have the congruence extension property [5].

It is not likely that the varieties of semigroups with the amalgamation prop-

erty will be completely determined soon, but we can still test the implication

AP+RS =* CEP.

In what follows, we will call a semigroup in which every element has a two-

sided inverse with respect to some two-sided identity element a group. A semi-

group homomorphism between two groups must preserve idempotents, hence it

preserves the (unique) identity element and therefore inverses.

Lemma 3.1. Let S? be a variety of semigroups which has AP. The subclass of

groups & ç ¿7 also has AP.

Proof. Trivial. Any diagram of groups can be completed with embeddings into

some semigroup, but the images of these embeddings generate a subgroup of

this semigroup.

Indeed, it is easy to see that this theorem is true for more general categories

of semigroups.   D

Corollary 3.2. If S? isa variety of semigroups satisfying AP + RS, then & is

a iwèvariety satisfying AP + RS.

Proof. Every residually small variety of semigroups satisfies x" « x " for some

n by [11]. Therefore, if we add x" • y « y and y • x" sa y to the laws of ¿7*
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we slice out exactly &. Hence j/ is a subvariety of S?. Necessarily *§ is RS

and, by the Lemma, & also has AP.   D

Following the notation of [11] we will denote by R(l , 1) the semigroup on

the set {0, a , 1} where the element 1 is a left unit element and all other products

are equal to 0. We will denote by L( 1 ,1 ) the semigroup on the same set with

the opposite multiplication.

Lemma 3.3. Any residually small variety of semigroups containing R(l , 1) or

L(l,l) fails to have AP.

Proof. If S? is residually small and contains R( 1 ,1 ) then, for some n, S' 1=

x" • y" • z » y" • x" ■ z by [11]. However, no semigroup variety having AP and

containing R( 1 ,1 ) can satisfy this equation, as we now prove.

Assume that <9* has AP and contains R( 1 ,1 ). Let N be the semigroup on

{0 , u , v} where all products are equal to 0. We have a diagram

R(l,l)xR(l,l)

1^ fx(0) = (o,o),     ¿r,(0) = (0,0)
N^ /,(«) = (fl.O),        gx(u) = (a,a)

\* fx(v) = (a,a),       gx(v) = (a,0)
^R(l,l)xR(l,l)

Complete this diagram with a semigroup P and embeddings f2 and g2.

P must contain elements b = f2 o fx(u), c = f2 o fx(v), d = f2((l ,0)), and

e = *2((1,0)). We see that d ■ b = f2((l ,0) • (a ,0)) = f2((a ,0)) = b =
f2(( 1 ,0) • (a ,a)) = d • c. Similarly that e • b - c = e -c. Hence, for all n we

see that e" ■ (d" ■ b) = c ^ b = d" • (e" ■ b), so S? is not residually small.

L( 1 ,1 ) is handled in the same way.   □

Our notation for the next theorem is that Z2 is the two-element semilattice,

fL2 is the two-element null semigroup (multiplication satisfies x • y « w • z),

R2 is the two-element right-zero semigroup (multiplication satisfies x ■ y « y )

and L2 is the two-element left-zero semigroup. If S is a semigroup then S

is the semigroup obtained from S by adding a new zero element. This notation

follows [11].

Theorem 3.4. For a variety S? of semigroups the following are equivalent:

(a) The subdirectly irreducible members of 5? are among the following

semigroups:

7       7     9     1      R(0)   T(0)
2 '  ^2 '     2 '    2 '     2    '    2

along with finitely many semigroups of the form G or G where G is a cyclic

group of prime-power order.

(b) S" has the CEP.

(c) S" satisfies AP + RS.

(d) y isRS, R( 1 ,1 ) ft y, L( 1 ,1 ) g SP, and & contains no nonabelian

groups.
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Proof. The fact that (a) => (b) =>• (c) is given in [5]. To show that (c) implies

(d), note that Lemma 3.3 proves that if &*■ satisfies AP+RS then R(l ,1) and

L( 1 ,1 ) are not elements of S?. Let *§ ç 5? be the subvariety of 5? consisting

of groups. By Corollary 3.2 and the results of the last section, S also satisfies

AP+RS and hence fN J?. If G e ^ is a nonabelian group, then we could

choose x e [G,G]\{1G} and set (x) = H < G. Now, [1G,1G]|H = !H ¿

0H = [1H , 1H], so S? fails R. Consequently, 9 must be a variety of abelian

groups.

That (a) follows from (d) is a consequence of the characterization of RS

varieties of semigroups in terms of their subdirectly irreducible members given

in [11].   D

A variety of monoids is closely related to the variety of semigroups that it

generates. Because of this, it is easy to establish the following theorem.

Theorem 3.5. For a variety Jf of monoids the following are equivalent

(a) The subdirectly irreducible members of JK are among the following

monoids

z2

along with finitely many monoids of the form G or G where G is a cyclic

group of prime-power order.

(b) Jt has the CEP.

(c) Jf satisfies AP + RS.

(d) JÍ is RS and contains no nonabelian groups,   u

Such a variety is a variety of strong semilattices of exponent-« abelian

groups.

4. Remarks

We make a few additional remarks about the implication AP+RS =► CEP.

Suppose that ^ is a variety of unary algebras. If B is a subalgebra of A,

where Ae^, and if 8 is a congruence on B, then 8 U 0A is a congruence on

A extending 8 ; hence f¿ has the CEP. It is even easier to see that ^ has the

AP. To complete the diagram

fy

we only need to take the "union" of B and C (considering / and g to be

inclusions). It is not hard to show that this algebra is a member of ^ if

B and C are disjoint over A. In [15] we find the theorem that any unary

algebra may be embedded into a compact topological algebra (its Stone-Cech

compactification). In particular, any unary algebra may be embedded into an
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equationally compact algebra. By W. Taylor's characterization of RS varieties

[13], this is precisely what it means for ^ to be RS. Hence, unary varieties

satisfy AP+RS+CEP. For varieties of algebras, this observation and the results

of this paper subsume and extend the catalogue of information labelled "Table

of Results" in [10] with respect to the implication AP+RS => CEP.

J. Berman has shown that any nonmodular variety that is generated by a two-

element algebra is either equivalent to the variety of semilattices (with possibly

a nullary or constant unary operation added) or it is essentially unary [4]. From

our results we conclude that two-element algebras generate varieties satisfying

the implication AP+RS => CEP. This remark is not deep, in fact it is not hard

to use Berman's observation to give a proof that every two-element algebra

generates a variety satisfying AP+RS+CEP (i.e., an injectively complete variety).

The relationship between AP, RS and CEP can also be investigated for vari-

eties generated by a finite algebra. The answer here is not known, but is is quite

possible that more implications hold (see [8]).
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