# APPROXIMATING THE INVARIANT DENSITIES OF TRANSFORMATIONS WITH INFINITELY MANY PIECES ON THE INTERVAL

### P. GÓRA AND A. BOYARSKY

(Communicated by Kenneth R. Meyer)

ABSTRACT. Let I=[0,1] and  $\tau\colon I\to I$  be a piecewise continuous, expanding transformation with infinitely many pieces of monotonicity. We construct a sequence of transformations  $\{\tau_n\}$ , each having a finite partition, such that their invariant densities converge in  $L_1$  to the invariant density of  $\tau$ .

## 1. Introduction

Let  $I=[0\,,1]$  and let  $\tau\colon I\to I$  be a piecewise continuous, expanding transformation with finite of infinitely many pieces of monotonicity. When  $\tau$  admits an absolutely continuous invariant measure (acim)  $\mu$ , with density function f, we are interested in a method for approximating f. If  $\tau$  has a finite number of pieces, results are available [3, 5]. In [4], it is shown that piecewise linear Markov maps  $\{\tau_n\}$  can be constructed which approach  $\tau$  uniformly and whose densities  $\{f_n\}$  converge in  $L_1$  to f. This is a strong result which cannot be derived from [3] since the essential inequality there involves a constant which depends inversely on the minimum length of the partition.

There are important transformations which have an infinite number of pieces, for example, the Gauss transformation  $\tau(x) = 1/x \pmod{1}$ . Also, first return maps for any map  $\tau$  give rise naturally to transformations with a countable number of pieces [2]. There are no known approximation theorems that apply to such maps. However, the method of this note will allow the approximation of the density for such  $\tau$ .

Further motivation for approximating transformations with infinite pieces comes from computer implementations of dynamical systems. Suppose  $\tau$  has a countable number of pieces. Then any computer representation,  $\hat{\tau}$ , of  $\tau$  will necessarily have only a finite number of pieces. This invites the question: will the absolutely continuous measure associated with  $\hat{\tau}$  be close to the acim of  $\tau$ ? This problem was studied in [7] in the case when  $\tau$  has a finite partition. With

Received by the editors July 31, 1988.

<sup>1980</sup> Mathematics Subject Classification (1985 Revision). Primary 28D05; Secondary 58F11. The research of the second author was supported by NSERC and FCAR grants.

the results of this note, the invariant density of a map with infinite number of pieces can be approximated by the invariant density of a map with finite number of pieces,  $\tau_n$ , and by the results of [7], the computer representation of  $\tau_n$ ,  $\hat{\tau}_n$ , has associated with it an absolutely continuous measure which approximates the invariant density of  $\tau_n$ . This result is of interest since it proves that histograms of computer orbits  $\{\hat{\tau}_n^i(x)\}_{i=1}^{\infty}$  can be used to approximate invariant density of the map  $\tau$  with an infinite number of pieces.

Using a key lemma from [1], a compactness result analogous to that proved in [4] is established in §2 for families of transformations with a countable number of pieces. This is used to prove the following approximation theorem: the invariant density of a piecewise continuous, expanding transformation with a countable number of pieces can be approximated by the densities  $\{f_n\}$ , invariant under  $\{\tau_n\}$ , where  $\tau_n$  is a finite approximation of  $\tau$ .

In §3, some examples are presented and an application to linear algebra is suggested. In §4, we discuss the application of the main result to first return maps of nonexpanding transformations.

# 2. Main result

**Definition 1.** Let  $\tau_n$ ,  $\tau$  be maps from I = [0, 1] into itself. We say  $\tau_n$  converges to  $\tau$  almost uniformly if given any  $\varepsilon > 0$  there exist a measurable set  $A_{\varepsilon} \subset I$ ,  $m(A)_{\varepsilon} > 1 - \varepsilon$ , such that  $\tau_n \to \tau$  uniformly on  $A_{\varepsilon}$ .

The following lemma will be useful in the sequel.

**Lemma 1.** Let  $\tau_n \to \tau$  almost uniformly. Let  $f_n$  be a fixed point of  $P_n = P_{\tau_n}$ . If  $f_n \to f$  weakly in  $L_1$ , then  $P_{\tau}f = f$ .

*Proof.* We shall prove that the measures f dm and  $(P_{\tau}f) dm$  are equal. To do this it suffices to show that for any  $g \in C(I)$ :  $\int g(f - Pf_{\tau}) dm = 0$ . We have

(1) 
$$\left| \int g(f - P_{\tau}f) dm \right| \leq \left| \int g(f - f_{n}) dm \right| + \left| \int g(f_{n} - P_{n}f_{n}) dm \right| + \left| \int g(P_{n}f_{n} - P_{\tau}f_{n}) dm \right| + \left| \int g(P_{\tau}f_{n} - P_{\tau}f) dm \right|.$$

The first term goes to 0 as  $n\to\infty$  since  $f_n\to f$  weakly in  $L_1$ . The second term is 0 since  $P_nf_n=f_n$ . Since

$$\int g(P_{\tau}f_n - P_{\tau}f) dm = \int (g \circ \tau)(f_n - f) dm,$$

and  $g \circ \tau$  is bounded, using the continuity of g, the weak convergence of  $f_n$  to f implies that the fourth term goes to 0 as  $n \to \infty$ . It remains only to consider the third term. Since  $f_n \to f$  weakly as  $n \to \infty$ , the sequence  $\{f_n\}$  is uniformly integrable. Thus, given  $\delta > 0$  there exist  $\varepsilon > 0$  such that

for all  $n \ge 1$ , where  $m(B) < \varepsilon$ . Since  $\tau_n \to \tau$  almost uniformly,  $\tau_n \to \tau$  uniformly on a set  $A_{\varepsilon}$ , where  $m(A_{\varepsilon}) > 1 - \varepsilon$ . Returning to the third term of (1), we can write

$$\left| \int g(P_{n}f_{n} - P_{\tau}f_{n}) dm \right|$$

$$\leq \left| \int_{A_{\varepsilon}} (g \circ \tau_{n} - g \circ \tau) f_{n} dm \right| + \left| \int_{A_{\varepsilon}^{C}} (g \circ \tau_{n} - g \circ \tau) f_{n} dm \right|$$

$$\leq \sup_{x \in A_{\varepsilon}} |g \circ \tau_{n}(x) - g \circ \tau(x)| \int |f_{n}| dm + 2 \sup |g| \int_{A_{\varepsilon}^{C}} |f_{n}| dm$$

$$\leq \omega_{g} \left( \sup_{x \in A_{\varepsilon}} \tau_{n}(x) - \tau(x) | \right) \int |f_{n}| dm + 2 \sup |g| \int_{A_{\varepsilon}^{C}} |f_{n}| dm$$

where  $\omega_g$  is the modulus of continuity of g. Since  $\tau_n \to \tau$  uniformly on  $A_{\varepsilon}$  and  $\int |f_n| \, dm$  are uniformly bounded, the first term in (3) tends to 0 as  $n \to \infty$ . Since  $m(A_{\varepsilon}^c) \le \varepsilon$ , it follows from (2) that  $\int_{A_{\varepsilon}^c} |f_n| \, dm < \delta$ , for all n. Hence, given any  $\delta > 0$ 

$$\left| \int g(P_n f_n - P_\tau f_n) \, dm \right| < \omega_g \left( \sup_{x \in A_\varepsilon} |\tau_n(x) - \tau(x)| \right) + K\delta$$

where  $K = 2 \sup |g|$ . Therefore, the third term of (1) can be made arbitrarily small by the proper choice of  $\varepsilon$  and n,  $n \to \infty$ , and the result is proved.

**Definition 2.** We say that the transformation  $\tau\colon I\to I$  is countably piecewise expanding if (i) there exists a countable set  $S\subset I$  such that for any connected component  $J\subset I\backslash S$ ,  $\tau_{|J|}$  is a monotonic  $C^1$ -function satisfying:  $|\tau'|\geq \lambda>2$ , (ii) we assume that S has a finite number of limit points  $L=\{s_i\}_{i=1}^q$ , and that  $V_Ig=W<+\infty$ , where

$$g(x) = \begin{cases} 0, & x \in S \\ |1/\tau'(x)|, & x \notin S. \end{cases}$$

Let  $\tau$  be a countably piecewise expanding transformation. We shall now describe a procedure for constructing a sequence of transformations  $\{\tau_n\}$  which approximate  $\tau$ . Let  $\delta>0$  be smaller than  $(\frac{1}{3}\min\{|s_i-s_j|:1\leq i$ ,  $j\leq q$ ,  $i\neq j\}$ . For any point  $s_i$ , i=1,...,q, we define one or two intervals  $U_i(\delta)$ , as follows:  $U_i(\delta)=(s_i,s_i+\delta)$  if  $s_i$  is a limit point of S from the right;  $U_i(\delta)=(s_i-\delta,s_i)$  if  $s_i$  is a limit point of S from the left, or both such intervals (with different indices) if  $s_i$  is a limit point of S from both sides.

Let  $\varepsilon_0 = \frac{1}{2} - 1/\lambda > 0$ . Consider the intervals  $U_i(\delta)$ ,  $i = 1, \ldots, \bar{q}$ , where  $\bar{q} \geq q$  since some of the limit points may be limit points from both sides. Let  $H(\delta) = \bigcup_{i=1}^q U_i(\delta)$ . Since  $V_I g$  is finite, we can choose  $\delta_0$  so small that  $\sup_{H(\delta_0)} g < \varepsilon_0/5$ . Now let  $\{\delta_n\}_{n=1}^\infty$  be any decreasing sequence of real numbers converging to 0,  $\delta_1 \leq \delta_0$ .

We define the approximation  $\tau_n$ ,  $n=1,2,\ldots$ , to  $\tau$  as follows: a)  $\tau_{n|_{U_i(\delta_n)}}$  is linear with  $|\tau'_n| \ge \lambda$ ,  $i=1,\ldots,\bar{q}$ ;

b)  $\tau_{n|_{I \setminus H(\delta_0)}}$  is identical with au . We define

$$g_n(x) = \begin{cases} 0, & x \in S \backslash H(\delta_0); \\ 1/|\tau'_n|, & \text{elsewhere}. \end{cases}$$

By the main result in [1], it follows that any  $\tau_n$  has an absolutely continuous invariant measure  $\mu_n$ . Let  $f_n$  be the density of this absolutely continuous invariant measure.

**Theorem 1.** The set  $\{f_n\}_{n=1}^{\infty}$  has uniformly bounded variation and is therefore strongly compact in  $L_1$ .

We shall prove this theorem by means of the following lemma.

**Lemma 2.** There exists a partition R of I into intervals such that for any  $\mathcal{I} \in R$  and any  $n = 1, 2, ..., V_{\mathcal{I}} g_n < \frac{1}{2}$ .

*Proof.* The jumps of g do not exceed  $\sup g$ . Therefore, for any  $\varepsilon > 0$  and every  $y \in I$  there exists some interval  $E_y$  containing y, such that  $V_{E_y}g < \sup g + \varepsilon$ . Since I is compact, there exists a finite subcover of  $\{E_y\}_{y \in I}$ , call it  $R_1$ , such that for any  $\mathscr{I} \in R_1$ :  $V_{\mathscr{I}}g < \sup g + \varepsilon$ . Since  $\sup g < 1/\lambda = \frac{1}{2} - \varepsilon_0$ , putting  $\varepsilon = \varepsilon_0/5$  we get  $V_{\mathscr{I}}g < \frac{1}{2} - 4\varepsilon_0/5$ , for any  $\mathscr{I}$  from  $R_1$ .

We now refine  $R_1$  a little as follows; let  $R_2$  be the partition whose endpoints are  $\{s_1,\ldots,s_q\}\cup\{\text{endpoints of intervals in }R_1\}$ . We now further refine  $R_2$  by adding, if necessary, points close to  $s_1,\ldots,s_q$  in such a way that the variation of g over the resulting intervals adjacent to  $s_1,\ldots,s_q$  is smaller than  $2\varepsilon_0/5$ . Call this new partition R.

Now  $\sup g_n < 1/\lambda$ ,  $\sup_{H(\delta_n)} g < \varepsilon_0/5$  and  $V_{\mathscr{I}}g < 2\varepsilon_0/5$  for any  $\mathscr{I} \in R$  such that  $\mathscr{I} \cap H(\delta_n) \neq \varnothing$ , for n sufficiently large. Thus, we have for any  $\mathscr{I} \in R$ ,  $\mathscr{I} \cap H(\delta_n) \neq \varnothing$ , and n sufficiently large

$$V_{\mathcal{J}}g_n \leq V_{\mathcal{J}}g + \sup_{\mathcal{J} \cap H(\delta_n)} g + \sup_{\mathcal{J} \cap H(\delta_n)} g_n(x) < \frac{3\varepsilon_0}{5} + \frac{1}{\lambda} < \frac{1}{2}.$$

**Lemma 3.** For any function f of bounded variation, we have

$$V_I P_{\tau_n} f \le a V_I f + D \|f\|_1$$

where

$$a = \sup_{n} \left( \sup_{x \in I} g_n(x) + \max_{\mathcal{I} \in R} V_{\mathcal{I}} g_n \right) \le \frac{1}{\lambda} + \frac{1}{2} < 1$$

and

$$D = \sup_{n} \left( \max_{\mathcal{I} \in R} (V_{\mathcal{I}} g_n / m(J)) \right) \le \frac{1}{2 \min_{\mathcal{I} \in R} m(J)}$$

and m is Lebesgue measure on I.

*Proof.* Corollary 3 of [1]. ■

We are now ready to prove Theorem 1. Let  $f_n$  be an invariant density of  $\tau_n$ . The existence of  $f_n$  follows from Lemma 3 by standard arguments. Again by Lemma 3, we obtain:  $V_I f_n < a V_I f_n + D \|f_n\|_1$ . Thus,  $V_I f_n \leq D/(1-a)$ ,  $n=1,2,\ldots$ . This completes the proof of Theorem 1.

**Theorem 2.** If f is a weak- $L_1$  limit point of the set of  $\tau_n$ -invariant densities  $\{f_n\}_{n\geq 1}$ , then f is a  $\tau$ -invariant density.

*Proof.* A direct consequence of Lemma 1, Theorem 1, and the construction of  $\tau_n$ .

**Corollary 1.** If  $\tau$  has a unique acim with density f, then the  $\tau_n$ -invariant densities  $f_n$  converge to f in  $L_1$ .

### 3. Examples

(1) It is well known that the Gauss transformation  $\tau(x) = 1/x \pmod{1}$  has invariant density  $f(X) = (1/\ln 2)(1/(1+x))$ . The transformation  $\tau$  is countably piecewise expanding and Corollary 1 applies to it. The approximation transformations  $\{\tau_n\}$  are defined as follows:

$$\tau_n(x) = \begin{cases} \tau(x) \pmod{1}, & 1/n < x \le 1 \\ -nx + 1, & 0 \le x \le 1/n. \end{cases}$$

The invariant density of  $\tau_n$  can be computed by using a piecewise linear approximation to  $\tau_n$ , as is done in [4].

(2) Let  $\tau$  be the piecewise linear, countably piecewise expanding transformation shown in Figure 1.

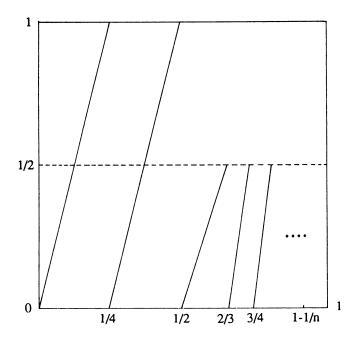


FIGURE 1.

The Frobenius-Perron operator for  $\tau$  can be represented by the matrix:

$$M = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \cdots & \frac{1}{4} & \cdots \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \cdots & \frac{1}{4} & \cdots \\ \frac{1}{3} & 0 & 0 & \cdots & 0 & \cdots \\ \frac{1}{6} & 0 & 0 & \cdots & 0 & \cdots \\ \vdots & & & & & \\ \frac{2}{n(n+1)} & 0 & 0 & \cdots & 0 & \cdots \\ \vdots & & & & & \end{bmatrix}.$$

Solving for the left eigenvector  $\bar{\pi}=(\pi_1,\pi_2,\dots)$ , we obtain  $\frac{1}{4}\pi_1+\frac{1}{4}\pi_2=\pi_2$ , which implies that  $\pi_2=\frac{1}{3}\pi_1$ . Also, it is easy to see that  $\pi_n=\frac{1}{3}\pi_1$ ,  $n\geq 2$ . Normalizing, we get:

$$\frac{1}{4}(\pi_1 + \pi_2) + \pi_n \sum_{n=2}^{\infty} \frac{1}{n(n+1)} = 1.$$

On substituting for  $\pi_2$  and  $\pi_n$ , we obtain  $\pi_1 = 2$  and  $\pi_n = \frac{2}{3}$ ,  $n \ge 2$ . Hence  $\bar{\pi} = (2, \frac{2}{3}, \frac{2}{3}, \dots)$  is the unique normalized invariant density of  $\tau$ . Let us now approximate  $\tau$  by

$$\tau_N(x) = \begin{cases} \tau(x), & 0 \le x < 1 - 1/N \\ Nx + 1/(2 - N), & 1 - 1/N \le x \le 1. \end{cases}$$

Then the invariant density of  $\tau_n$  is the unique normalized left eigenvector of

$$M_{n} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \cdots & \frac{1}{4} & \cdots \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \cdots & \frac{1}{4} & \cdots \\ \frac{1}{3} & 0 & 0 & \cdots & 0 & \cdots \\ \frac{1}{6} & 0 & 0 & \cdots & 0 & \cdots \\ \vdots & & & & & & \\ \frac{2}{N} & \frac{2}{N} & 0 & \cdots & 0 & \cdots \end{bmatrix}.$$

By Corollary 1, the sequence of left eigenvectors  $\{\bar{\pi}_N\}$  of  $\{M_N\}$  converges coordinatewise to  $\bar{\pi}$ . We remark that Corollary 1 provides a general procedure for truncating certain non-negative infinite-dimensional matrices in such a way that the normalized left eigenvectors of the truncated matrices converge to the normalized left eigenvector of the infinite-dimensional matrix.

## 4. FIRST RETURN MAPS

First return maps are often countably piecewise expanding. Consider, for example,  $\tau\colon I\to I$ , piecewise monotonic with a finite partition and having the property that at some fixed points  $\{x_i\}_{i=1}^s$ ,  $|\tau'(x_i)|=1$ . Then  $\tau$  is a nonexpanding map which has either a  $\sigma$ -finite or finite acim, but the approximation methods of [3,4,5] do not apply. Let  $W_1,\ldots,W_s$  be neighborhoods of  $x_1,\ldots,x_s$ . Then the first return map,  $R_W$ , of  $\tau$  to the set  $W=I\setminus\bigcup_{i=1}^s W_i$ , is piecewise countable and expanding.  $R_W$  can be approximated by the methods

of §2. Thus there exists a sequence of piecewise monotonic expanding transformations  $\{R_n\}_{n\geq 1}$ , each having a finite partition, such that the associated densities  $\{g_n\}_{n\geq 1}$  converge to g, the invariant density of  $R_W$ .

densities  $\{g_n\}_{n\geq 1}$  converge to g, the invariant density of  $R_W$ . Let  $\mu_W$  be the measure induced by g. Then it is easy to show (Lemma 2 of [2]) that for any set  $D\subset W$ ,  $\mu_W(D)=\mu_{|_{W}}(D)$ , where  $\mu_{|_{W}}$  is the  $\sigma$ -finite acim of  $\tau$  restricted to W and normalized on W. Hence the approximating densities  $\{g_n\}_{n\geq 1}$ , restricted to W, also approximate the density of  $\mu_{|_{W}}$ .

Consider the following example [8]:

$$\tau(x) = \begin{cases} \frac{x}{1-x} = \tau_1(x), & 0 \le x \le \frac{1}{2} \\ 2x - 1 = \tau_2(x), & \frac{1}{2} \le x \le 1. \end{cases}$$

Since  $\tau'(0) = 1$ , the first return map to the set  $G = (\frac{1}{2}, 1)$ , say, has a countable number of pieces:

$$R_G(x) = \begin{cases} \tau(x), & x \in (x_0, 1) \\ \tau^{n+1}(x), & x \in (x_n, x_{n+1}), n \ge 1, \end{cases}$$

where  $\{x_i\} \subset G$  and  $\{y_i\} \subset [0, \frac{1}{2}]$  are defined by

$$y_0 = \frac{1}{2}$$
,  $y_{n+1} = \tau_1^{-1}(y_n)$ , and  $x_n = \tau_2^{-1}(y_n)$ ,  $n \ge 1$ .

 $R_G$  can be approximated by the procedure of §2 and the measures of the resulting densities also approximate the normalized measure  $\mu_{|_G}$ , where  $\mu$  is the  $\sigma$ -finite measure invariant under  $\tau$  on the set G.

Remark. An alternate method for approximating the first return map of a non-expanding map is presented in [6].

## REFERENCES

- 1. M. Rychlik, Bounded variation and invariant measures, Studia Math., LXXVI (1983), 69-80.
- 2. G. Pianigiani, First return map and invariant measures, Israel J. Math. 35 (1980), 32-48.
- 3. G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94 (1982), 313-333.
- 4. P. Góra and A. Boyarsky, Compactness and invariant densities for families of expanding, piecewise monotonic transformations, preprint.
- 5. T-Y Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture, J. Approx. Theory 17 (1976), 177-186.
- 6. A. Boyarsky, Approximating the  $\sigma$ -finite measure invariant under a non-expanding map, J. Math. Anal. Appl. 78 (1980), 222–232.
- 7. P. Góra and A. Boyarsky, Why computers like Lebesgue measure, Applic. 16, No. 4, 321-329, 1988. Comput. Math.
- 8. A. Lasota and J. A. Yorke, , On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.

DEPARTMENT OF MATHEMATICS, WARSAW UNIVERSITY, WARSAW, POLAND

DEPARTMENT OF MATHEMATICS, CONCORDIA UNIVERSITY, 7141 SHERBROOKE ST. WEST, MONTREAL, CANADA H4B 1R6