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APPROXIMATING THE INVARIANT DENSITIES

OF TRANSFORMATIONS WITH INFINITELY

MANY PIECES ON THE INTERVAL

P. GÓRA AND A. BOYARSKY

(Communicated by Kenneth R. Meyer)

Abstract. Let / = [0,1] and r: / —» / be a piecewise continuous, expanding

transformation with infinitely many pieces of monotonicity. We construct a

sequence of transformations {t„} , each having a finite partition, such that

their invariant densities converge in L\ to the invariant density of r .

1. Introduction

Let / = [0 ,1 ] and let x : I —► I be a piecewise continuous, expanding trans-

formation with finite of infinitely many pieces of monotonicity. When x admits

an absolutely continuous invariant measure (acim) p , with density function /,

we are interested in a method for approximating / . If x has a finite number

of pieces, results are available [3, 5]. In [4], it is shown that piecewise linear

Markov maps {xn} can be constructed which approach x uniformly and whose

densities {fn} converge in ¿( to f . This is a strong result which cannot be

derived from [3] since the essential inequality there involves a constant which

depends inversely on the minimum length of the partition.

There are important transformations which have an infinite number of pieces,

for example, the Gauss transformation x(x) = l/x (mod 1) . Also, first return

maps for any map x give rise naturally to transformations with a countable

number of pieces [2]. There are no known approximation theorems that apply

to such maps. However, the method of this note will allow the approximation

of the density for such x .

Further motivation for approximating transformations with infinite pieces

comes from computer implementations of dynamical systems. Suppose x has

a countable number of pieces. Then any computer representation, f, of x will

necessarily have only a finite number of pieces. This invites the question: will

the absolutely continuous measure associated with t be close to the acim of x ?

This problem was studied in [7] in the case when x has a finite partition. With
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the results of this note, the invariant density of a map with infinite number of

pieces can be approximated by the invariant density of a map with finite number

of pieces, xn, and by the results of [7], the computer representation of xn, xn,

has associated with it an absolutely continuous measure which approximates the

invariant density of xn . This result is of interest since it proves that histograms

of computer orbits {x'n(x)}°Zx can be used to approximate invariant density of

the map x with an infinite number of pieces.

Using a key lemma from [1], a compactness result analogous to that proved

in [4] is established in §2 for families of transformations with a countable num-

ber of pieces. This is used to prove the following approximation theorem: the

invariant density of a piecewise continuous, expanding transformation with a

countable number of pieces can be approximated by the densities {fn} , invari-

ant under {xn}, where xn is a finite approximation of x .

In §3, some examples are presented and an application to linear algebra is

suggested. In §4, we discuss the application of the main result to first return

maps of nonexpanding transformations.

2. Main result

Definition 1. Let xn , x be maps from / = [0,1] into itself. We say xn con-

verges to t almost uniformly if given any e > 0 there exist a measurable set

AE c I, m(A)e > 1 - e, such that xn —> x uniformly on A£.

The following lemma will be useful in the sequel.

Lemma 1. Let xn —* x almost uniformly. Let fn be a fixed point of Pn = PT .

Vf„-ff weakly in Lx, then PJ=f.

Proof. We shall prove that the measures f dm and (PTf)dm are equal. To

do this it suffices to show that for any g e C(I) : f g(f - PfT)dm = 0. We
have

Jg(f-Pxf)dm\< || g(f - /„)rf/w| + || g(f„- PJn)dm

+ \fmfn - Prfn)dm\ + \jg(Pxfn - Pxf) dm .

The first term goes to 0 as n —► oo since f„—*f weakly in L, . The second

term is 0 since Pf = f . Since
nJ n       J n

i 8(PJn - PJ) dm = f(g o x)(fn -f)dm,
J J

and g o t is bounded, using the continuity of g, the weak convergence of fn

to / implies that the fourth term goes to 0 as n —* oo . It remains only to

consider the third term. Since f„—*f weakly as n —» oo, the sequence {fn}

is uniformly integrable. Thus, given ô > 0 there exist e > 0 such that

(2) f\fH\dm<6
J B
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for all n > 1 , where m(B) < e . Since xn -+ x almost uniformly, xn —> x

uniformly on a set A£, where m(A£) > 1 - e. Returning to the third term of

(1), we can write

1/
(3)

S(PJn-Pxfn)dm

\ f I Í
<\     (g°?n-g°?)f„dm\ + \     (goxn-gox)fnd

\JA, \JAi

< sup\goxn(x)-gox(x)\ / \fn\dm+ 2sup\g\ /   \fn\dm
x€Ac J JACC

<cog (supxn(x)-x(x)\) / \fn\dm + 2sup\g\ J   \fn\dm

where to is the modulus of continuity of g . Since xn —► x uniformly on

A£ and f\fn\dm are uniformly bounded, the first term in (3) tends to 0 as

n —> oo . Since m(Ac£) < e, it follows from (2) that fAC \fn\dm < ô , for all n .

Hence, given any ô > 0

||g(Pnfn - PJn)dm < cog (sup \xn(x) - t(x)|) + KÔ

where K = 2 sup \g\ . Therefore, the third term of (1) can be made arbitrarily

small by the proper choice of e and n , n —> oo, and the result is proved.      ■

Definition 2. We say that the transformation x: I' -* I is countably piecewise

expanding if (i) there exists a countable set S C I such that for any connected

component J c I\S, r,y is a monotonie C1-function satisfying: |t'| > X > 2,

(ii) we assume that S has a finite number of limit points L — {s¡}qj=x, and that

Vjg = W< +oo , where

( 0, xeS

I |1/t'(x)|, x$S.

Let x be a countably piecewise expanding transformation. We shall now de-

scribe a procedure for constructing a sequence of transformations {xn} which

approximate t . Let S > 0 be smaller than (^min{|j(. - s,\: 1 < i, j < q,

i ¥" j} ■ For any point s¡, i — I , ... , q, we define one or two intervals U¡{0),

as follows: U¡(0) = (sj ,s¡ + ô) if si is a limit point of S from the right;

(/¡(S) = (si - ô ,s¡) if si is a limit point of S from the left, or both such

intervals (with different indices) if s, is a limit point of S from both sides.

Let e0 = \ - l/k > 0. Consider the intervals Ut(ô), i = 1 , ... ,q, where

q > q since some of the limit points may be limit points from both sides.

Let H(6) = ljf=i V¡(o). Since V¡g is finite, we can choose S0 so small that

supW((5, g < e0/5 . Now let {ôn}°^=x be any decreasing sequence of real numbers

converging to 0, Sx <S0 .

We define the approximation xn, n = I ,2 , ... , to x as follows: a) x,

is linear with \x \>X, i = I , ... ,q;
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b) t„, is identical with x . We define
'       "l/\««ol

|0, xeS\H(S0);

[ l/\x'n\,    elsewhere.

By the main result in [1], it follows that any xn has an absolutely continuous

invariant measure pn. Let fn be the density of this absolutely continuous

invariant measure.

Theorem 1. The set {/„}^1, has uniformly bounded variation and is therefore

strongly compact in Lx .

We shall prove this theorem by means of the following lemma.

Lemma 2. There exists a partition R of I into intervals such that for any J e R

and any n = I ,2 ,... Vsgn < ^ .

Proof. The jumps of g do not exceed sup g . Therefore, for any e > 0 and

every y e I there exists some interval E containing y, such that VE g <

supg-l-e . Since / is compact, there exists a finite subcover of {E } }, call it

Rx , such that for any S e Rx : Vjrg < sup g + e . Since sup g < 1/A = \ -eQ,

putting e = e0/5 we get V^g <\- 4e0/5 , for any S from Rx .

We now refine R x a little as follows; let R2 be the partition whose endpoints

are {sx , ... ,5 }U {endpoints of intervals in Rx} . We now further refine R2 by

adding, if necessary, points close to sx , ... ,s in such a way that the variation

of g over the resulting intervals adjacent to 5, , ... ,s is smaller than 2e0/5 .

Call this new partition R .

Now supgn < 1/A, supW((5 ,g < e0/5 and V^g < 2e0/5 for any J^ e R

such that y n H(Sn) # 0, for n sufficiently large. Thus, we have for any

S eR, S D H(Sn) ¿ 0, and n sufficiently large

3en     1      1
Vjgn < V^g +    sup   g +    sup   g (x) < —^ + T < - .

SnH(S„)        JT\H(S„) SAZ

Lemma 3. For any function f of bounded variation, we have

V^/KaVj + DWfW,,

where

and

a = sup(supgn(x) + malVsgn)<\ + ïï

D = sup[rna^gJm(J)))<J^

< 1

>S€R m(J)

and m is Lebesgue measure on I .

Proof. Corollary 3 of [1].    ■

We are now ready to prove Theorem 1. Let fn be an invariant density of

xn . The existence of fn follows from Lemma 3 by standard arguments. Again

by Lemma 3, we obtain: VJn < aV,fn + D\\fn\\x . Thus, V,fn <D/(l-a),
« = 1,2,... . This completes the proof of Theorem 1.    ■
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Theorem 2. If f is a weak-Lx  limit point of the set of xn-invariant densities

{f„}n>l, then f isa x-invariant density.

Proof. A direct consequence of Lemma 1, Theorem 1, and the construction of

V   ■

Corollary I. If x has a unique acim with density f, then the xn-invariant den-

sities fn converge to f in Lx .

3. Examples

(1) It is well known that the Gauss transformation x(x) = l/x (mod 1)

has invariant density f(X) = (l/ln2)(l/(l + x)) . The transformation x is

countably piecewise expanding and Corollary 1 applies to it. The approximation

transformations {xn} are defined as follows:

x(x) (mod 1),    l/n<x< 1

nx + 1 , 0 < x < l/n.
r„W = {

The invariant density of xn can be computed by using a piecewise linear ap

proximation to xn , as is done in [4].

(2) Let x be the piecewise linear, countably piecewise expanding transfor

mation shown in Figure 1.

1/4 1/2        2/3    3/4 1-1/n

Figure 1.



APPROXIMATING THE INVARIANT DENSITIES OF TRANSFORMATIONS 927

The Frobenius-Perron operator for x can be represented by the matrix:

M =

n{n+l)

i i
4 4
I I
4 4

0 0

0 0

0    0

I
4
I
4

0

Solving for the left eigenvector ñ — (nx ,n2,...), we obtain \nx + \n2 = n2,

which implies that n2 - \nt . Also, it is easy to see that nn = \nx, n > 2 .

Normalizing, we get:

4^1 2' «Z_^ „(„ + J)
«=2

On substituting for n2 and 7rn , we obtain itx = 2 and nn = \ , n>2. Hence

It = (2, |, |,... ) is the unique normalized invariant density of x . Let us now

approximate x by

M*) = {
x(x), 0<x<l-l/N

Nx+l/(2-N),    l-l/N <x<l.

Then the invariant density of xn is the unique normalized left eigenvector of

M.=

i
4
i
4

0

I
4

0

0    0

2 0

I
4
I
4

0

0

By Corollary 1, the sequence of left eigenvectors {nN} of {MN} converges

coordinatewise to ñ . We remark that Corollary 1 provides a general procedure

for truncating certain non-negative infinite-dimensional matrices in such a way

that the normalized left eigenvectors of the truncated matrices converge to the

normalized left eigenvector of the infinite-dimensional matrix.

4. First return maps

First return maps are often countably piecewise expanding. Consider, for

example, x : I —► /, piecewise monotonie with a finite partition and having

the property that at some fixed points {jcf }^=1, |t'(.x(.)| = 1 . Then x is a

nonexpanding map which has either a cr-finite or finite acim, but the approxi-

mation methods of [3,4,5] do not apply. Let W{ , ... ,Ws be neighborhoods of

xx , ... ,xs . Then the first return map, Rw , of x to the set W = I\ \JS¡=X W¡, is

piecewise countable and expanding. Rw can be approximated by the methods
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of §2. Thus there exists a sequence of piecewise monotonie expanding trans-

formations {R„}n>l , each having a finite partition, such that the associated

densities {gn}n>l converge to g, the invariant density of Rw .

Let pw be the measure induced by g . Then it is easy to show (Lemma 2

of [2]) that for any set D c W, pw(D) = P<W(T>), where p, is the cr-finite

acim of T restricted to W and normalized on W. Hence the approximating

densities {gn}n>l, restricted to W, also approximate the density of p.,   .

Consider the following example [8]:

x(x) = i^ = txiXh        °-X-'

\ 2x - 1 = x2(x),    \ < x < 1.

Since t'(0) = 1, the first return map to the set G = (j ,1), say, has a countable

number of pieces:

„  ,  ^      Í TM '
I ?   (*),

xe (x0,l)

xe(xn,xn+x),n> 1,

where {xt} c G and {y,} c [0 , j] are defined by

>tj=2->       yn+i=hl(yn)>       andx„ = T2_1(vn),       «>1.

RG can be approximated by the procedure of §2 and the measures of the re-

sulting densities also approximate the normalized measure p., where p is the

o -finite measure invariant under x on the set G.

Remark. An alternate method for approximating the first return map of a non-

expanding map is presented in [6].
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