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ON HEARING THE SHAPE OF A TRIANGLE

PEI-KUN CHANG AND DENNIS DETURCK

(Communicated by Jonathan M. Rosenberg)

Abstract. To determine whether two triangles in the Euclidean plane are con-

gruent, it suffices to know that they have their first N eigenvalues in common,

where N depends on the first two eigenvalues of the triangles. Similar results

for other figures are given.

Introduction

When discussing geometric properties of Riemannian manifolds which can

be determined from the spectrum of the Laplacian operator of the manifolds,

it has become fashionable to say that such a property can be "heard" (following

M. Kac [K]). However, this kind of hearing is very idealized, in that most of

the geometric information is obtained from the asymptotics of the sequence

{Xn} of eigenvalues as n tends to infinity. On the other hand, it is realistically

possible to hear only a finite part of the spectrum, since the energies of the high-

frequency components of vibrations must be very small in order for the total

energy of the vibrations to be finite. The type of results that concern us here,

therefore, address what one can discern from a finite part of the spectrum of

the Laplacian. In particular, we consider the problem of differentiating among

the members of a finite-dimensional family of metrics on a given manifold by

means of a finite part of the Laplace spectrum. The first result of this sort

was proved by P. Buser and G. Courtois for constant-curvature metrics on

Riemann surfaces. In § 1, a general theorem to this effect based on that of Buser

and Courtois is proved, and is applied in §2 to the case of triangles in the

Euclidean plane, and other figures in Euclidean space. These results provide

a partial answer to a question posed by M. Potter in [P]. The key ingredients

in the proof are the assumption of real-analytic dependence of the metric on

the parameters, and the resulting real-analytic dependence of certain symmetric

functions of the eigenvalues, and finally the fact that the ring of germs of real-

analytic functions of finitely many variables is Noetherian. As pointed out in
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§2, extra geometric information about the family in question can help improve

the conclusion of the result.

1. Finitely many eigenvalues suffice

Let D be a compact oriented manifold (with or without boundary) of di-

mension n . We consider a family of metrics g(s), depending analytically on

the parameter egR*. Let kk(e) denote the kth eigenvalue of the Laplacian

of g(e) on D—if dD jé 0 we assume that dD is piecewise smooth and

we impose Dirichlet boundary conditions on the eigenfunctions. We also let

Spec(e) denote the entire collection of eigenvalues (counting multiplicities) of

the Laplacian of g(e).

Proposition. With the notation above, for each compact subset K of the param-

eter space, there is an integer N(K) with the following property: If e0 ,e¡ G K

suchthat A,(e0) = A,(e1),A2(e0) = A2(e1), ... ,kN(e0) =kN(ei),then Spec(e0) =

Spec(e, ). In other words, for s G K the entire spectrum of the Laplacian of g(e)

is determined by the values of the first N(K) eigenvalues.

Proof. Since the metric depends analytically on the parameters, we can mimic

the proofs of results of Rellich ([R], p. 83ff) and of Garabedian and Schiffer

([GS], Chapter V) on "interior variations" of domains to show that the Green's

operator (resolvent) of the Laplacian of g(e) also varies analytically with e.

The Green's operator is compact (use the Green's operator for A + 1 in the

case of manifolds without boundary), so we can use theorems from [Ko] as

follows: Fix e0 in the parameter space and consider g(eQ). The multiplicities

of the eigenvalues of the Laplacian of g being finite, we can construct an in-

creasing sequence {a;} with a¡ ] oo such that ai £ Spec(e0) and the number

of linearly independent eigenfunctions with eigenvalue between ai and ai+l

is finite for each i. By Theorem VII. 1.7 of [Ko], the projection P¡(e) onto

the finite-dimensional space spanned by the eigenfunctions of the Laplacian

of g(e) with eigenvalue between ai and ai+x is analytic in e for e in some

neighborhood of e0. Since the Laplacian of g(e) commutes with P(e), the

nonzero eigenvalues of the composition of the two are the same as the eigen-

values of the Laplacian of g(e) between a¡ and aj+l . Thus, we may consider

the "piece" of the Laplacian between a, and aj+l to be the restriction of this

composition to the image of />(e). The symmetric functions of the eigenvalues

of this finite-dimensional operator completely determine and are determined by

the eigenvalues themselves, and the symmetric functions of the eigenvalues are

also analytic in e.

Now we can begin the proof of the theorem in earnest. We proceed by

reducito ad absurdam: Suppose there were no N(I) with the property stated in

the Proposition. Then there would be an increasing sequence of positive integers

{nf} with n¡ ] oo and a sequence of pairs of points in the parameter space
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{(e°,e¡)} such that At(e°) = kk(e]) for all k = 1, ... ,«,., but \ + 1(e°) ^

X„ +i(£/ ) • Since Ä^ (and therefore AT x K ) is compact, there is a subsequence

of {(e( ,e))} (which we continue to denote {(ej ,e])} ) which converges, say to

(e,, e. ) G K x K. By continuity of the symmetric functions of the eigenvalues

in a neighborhood of (e°t,e[) as explained above, we must have Spec(eJ =

Spec(eJ . We choose the {a¡} of the previous paragraph to be appropriate for

Spec(eJ and Spec(e^) ), and assume that «. = #{A e Spec(eJ|A < af} , without

loss of generality.

Let cf be the ring of germs at (e° , e[) of real analytic functions on K x K.

We consider the increasing sequence of ideals {Jrm} in cf, where Jrm is gen-

erated by the set {ax j(e0) -c,,Âs{)\i < m}, where at. ¡(e) is the jth symmetric

function of the eigenvalues of the Laplacian of g(e) which lie between ai and

a¡ x (for j between 1 and ni+] - ni ). Since Jrm is generated by finitely many

functions, there is a neighborhood Um of (et ,et) on which all of the series

of these analytic functions converge—the common zeroes of these functions

comprise an analytic set Am c Um . Now we can use the fact that cf is a

Noetherian ring (see [N], Chapter 2) to conclude that there is an integer M

such that Jrm = J^M for all m > M ; in other words, Am = AM n Um for

m > M. Note that dim^^ > 1 since AM contains infinitely many distinct

points (those of the sequence), cf being Noetherian also implies that AM has

only finitely many irreducible components (i.e., connected components, see [N],

Chapter 3). We may thus assume (by passing to a subsequence again) that all

the points in our sequence and the limit lie in the same connected component of

AM . Now choose m > M, then there is an i so that (e° ,e)) G Am, therefore

there is an analytic curve, completely contained in Am , which connects (e( , e( )

to (et, et ). But Theorem 1 of Chapter 2 of [R] tells us that, as a function of

a single parameter, branches of each eigenvalue may be chosen to be analytic.

For (e , e ) on the curve and close enough to (et, ej , any given eigenvalue of

g(e ) is equal to its counterpart for g(e ), thus, the analytic function which

is the difference of these eigenvalues is identically zero on an open part of our

curve near (et ,£„,). This would imply that all the metrics on our curve would

be isospectral, which contradicts our choice of {(e° ,£■)}.

It is interesting to note how the number N of eigenvalues required in the

conclusion of the Proposition can vary as we consider different (even closely

related) families. For example, the spectrum of a rectangle in the Euclidean

plane with length L and height H is given by the set of numbers

{2222 Ï

P n    , Q n . I-^ + 1F,p,q=l,2,..j.

Thus, from the first two eigenvalues, we can determine L and H, and so for

any family of rectangles, N = 2. On the other hand, if we consider rectangular
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flat tori, then the eigenvalues are

(2222 1

-jT-ir~jpr,p,q = 0,1. J,..A.

If // is very small compared to L, say H = L/M, then the first M eigenvalues

of the torus all come from choosing q = 0, so we cannot determine H until we

have "heard" at least M + 1 eigenvalues. As M —► oo then, so does N. This

seems to be an indication of the general picture, in that for convex bounded

domains in Euclidean space, arguments similar to those given in the next section

enable us to use the first two eigenvalues to find a compact set in which the

domain is contained. But for manifolds without boundary, there can be no

such results without more geometric assumptions.

2. Triangles, etc

We specialize the result of the previous section first to triangles in the Eu-

clidean plane. Our motivation for doing this comes from recent attention and

progress on the problem of identifying triangles spectrally (see [C] and [D]).

The work done up to now has made use of asymptotics, and thus information

about infinitely many eigenvalues—we show that finitely many should suffice.

For triangles the above proposition is applicable, since we can consider any

Euclidean triangle T to have as underlying manifold the "standard triangle"

with vertices (0,0), (0,1), and (1 ,0), and metric given by the pullback of

the standard Euclidean metric by the obvious linear map from the "standard

triangle" to T. It is then clear that the metric is an analytic function of the

lengths of two sides of the triangle and the angle between them, for example.

Theorem 1. Let TQ be a (Euclidean) triangle. There is an integer N, which

depends only on the first two eigenvalues of TQ such that if T, is another triangle

with A|(T0) — ¿,(7,), ... ,kN(T0) = kN(T{), then T0 and Tt are isospectral.

Proof. We need only show that the set of triangles with a given A, and X2 is

compact. Clearly, this will be accomplished if we can find an upper bound for

the length of the longest side and a lower bound for the length of the shortest

side of such a triangle. To obtain these bounds, first recall that the eigenvalues

of a domain are "monotonie" functions of the domain, i.e., if Z), c D2, then

A,-(D,) > k-t(D2) for all / > 0. Now, observe that we can inscribe the triangle

in a rectangle of length L and height H, where L is the length of the longest

side of the triangle and H is the height of the triangle off the longest side.
2       —2 — 2

Recall that the first eigenvalue of this rectangle is n (H + L ). Since the

first eigenvalue of the rectangle is smaller than that of the triangle, we have

X[(T) >n2/H2,

which gives a lower bound for the length of the triangle's shortest side. Now,

inscribe a rectangle of height aH and length (1 - a)L inside the triangle (the

length of the rectangle is along the longest side of the triangle).  Since k2(T)
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2
is strictly bigger than ki(T), we can find an a less than 1 so that a k2(T) >

XX(T). The fact that the second eigenvalue of the inscribed rectangle (which is

the smaller of n2{4(aH)~2+ ((\-a)L)~2} and n2{(aH)~2 + 4((1 -a)L)~2})

is bigger than the second eigenvalue of the triangle, combined with the estimate

above for H yields

X2(T)-\xx(T)<       4\2
a (1 — a) L

This gives the required upper bound for L.

Theorem 2. Let EQ be the interior of an ellipsoid in Rn. There is an integer

N, which depends only on the first two eigenvalues of E0 such that if Ex is the

interior of another ellipsoid with XX(E0) = A,(£,), ... ,XN(E0) = XN(EX), then

E0 and Ex are isospectral.

Proof. As for triangles, we can consider an ellipsoid to have as underlying man-

ifold the unit ball in Rn, with the metric obtained by pulling the Euclidean

metric back via the obvious (diagonal) linear map. Thus, the metrics of ellip-

soids vary analytically as functions of the lengths of the principal axes. We need

to show that ellipsoids with given A, and A2 comprise a compact set. As with

triangles, this means finding a lower bound for the length ax of the shortest

principal axis, and an upper bound for the length an of the longest. The first

task is easy, since the ellipsoid can be inscribed within a rectangular box whose

shortest side has the same length as the shortest axis. Thus,

XX(E) > n ¡ax

as before. To proceed further, we need a slightly better estimate of A, . The

ellipsoid can also be inscribed in the right cylinder of length an whose cross

section is the (tt-l)-dimensional ellipsoid with axes ax, ... ,an_x . If px is the

first eigenvalue of the interior of this («- l)-dimensional ellipsoid, then we have

XX(E) > px . As with the triangles, we will now inscribe a right cylinder whose

cross section is the n - 1-dimensional ellipsoid with axes aax , ... ,aan_x for

a < 1 such that XX(E) < a2X2(E). Note that the first eigenvalue of this (n- 1)-

dimensional ellipsoid is px/a . The length of the cylinder is (1 - a ) an , so

as above we conclude

X2(E) - \XX(E) <       4\
a (1 -a )an

This completes the proof.

This line of proof can be easily generalized to other finite-dimensional fam-

ilies of subsets of Euclidean space (e.g., simplices, parallelopipeds, etc).
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