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ALGEBRAS OF HOLOMORPHIC

FUNCTIONS BETWEEN Hp AND Nt

NOZOMU MOCHIZUKI

(Communicated by Paul S. Muhly)

Abstract. For the algebra Np, p > 1 , introduced by Stoll with the notation

(Log+ H)" in [5], a characterization of the outer functions will be given, which

can be used to derive results analogous to those of N,  [4].

1. The algebra Np

In this section, some introductory remarks will be made. Let U and T

denote the unit disk in C and the unit circle. For <f> e Ll(T), a holomorphic

function H[4>] is defined by

H[<t>](z) = (2n)-{ [ M H(z ,e')4>(e")dt       (zeU),
Jo

where H(z ,e") = (<?" + z)(<?" - z)_1 . Note that H = P + iQ, with P the

Poisson kernel. P[<f>] will denote the Poisson integral. We denote by Np , for

p > 1, the class of functions / holomorphic in U and satisfying

sup  ¡\lo%\f(re")\)pdt<+oo.
0<r<l 70

If fe Np , then log(l + \f\) e LP(T) and

(1) (log(l + |/(«;)|))1' < P[(log(l + |/*|))"](u;)      (well),

where /* is the boundary function of / on T. Under the metric dp , defined

for f,geNp by

dp(f,g) = i(2»)-' f'\log(l + \f(e") - g*(e")\))pdt}   " ,

Np becomes an F-algebra. For f e Np , (I) implies that

(2) log(l + |/(w)|) < 21/"^(/,0)(l - |^|)~1/p       (weU).

Received by the editors July 5, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 30H05, 46J15; Secondary

46J20.

©1989 American Mathematical Society

0002-9939/89 $1.00+ $.25 per page

898



ALGEBRAS OF HOLOMORPHIC FUNCTIONS 899

It is known that

N" c N" (q > p),     U H" c f) N" ,    and    (J Np c N, ,
p>0 /»l p>l

where the first containment is proper. To see that the second is proper, let

cf>(e") = (log/)2 (r S (0,2n]). Then 0 e Z.P(F) for all p > 1 and / £

Lp(7") for any p > 0. Define / by /(z) = exp(/7[</>](z)) (z e U). Since

(log+l/íz)!)" < P[<t>"](z), we have / € Np for all /? > 1. On the other

hand, |/*| = e* a.e. on T implies that / £ Hp, for p > 0. Next let

^(e,',) = r,(H-|logr|)~2 (re (0,2a]) and define / by f(z) = exp(H[y/](z)).

Since y/ e Ll(T) and log+ |/(z)| = P[i//](z), the uniform integrability of the

functions {log+ \fr(e")\ |0 < r < 1} follows, i.e., fe Nt, and log+ \f\ = yt £

LP(T), p > 1, implies / <£ Np , p > I. Thus the third containment is also

proper.

If / e Hp , 0 < p < 1, then f e Hq with « = /?(1 - p)~l (Hardy-
Littlewood, [1]). On the other hand, f e N does not imply f e N (Hayman,

[3]). Further, f e Nt does not imply f e N (Yanagihara, [6]). In contrast

to Hp, Nm, and N, the class Np has the following property: If f e Np,

then feN". If <? > p, then there exists / such that / e Np , yet / ^ TV9 .

The former is easily seen by a maximal function argument [3, p. 183]. To see

the latter, let f(z) = exp((l - z)~a) (z e U) with q~l < a < p~x . Since

(1 - z)~n e H" , we have feN" and hence f(z) = a/(z)(l - z)"a_1 € Np .

Let Mx(f;r) = Max{|/(z)| \z\ = r}. Then log+MJ/» = (1 - r)"a (0 <

r < 1 ), and hence ( 1 - r) 'q log+ M^ (f;r) —► +oo as r —> 1. It follows from

(2) that / i Nq .

2. Algebra homomorphisms

By the same argument as in [4], we can prove that if y is a nontrivial

multiplicative linear functional on Np, then there exists X e U such that

7(f) = fW (f S Np) and y is continuous, by (2). This fact will be used to see

part (4) of the following Theorem 1.

Let ¥: U —* U be a holomorphic map. For / holomorphic on U, we define

C^f by
(CT/)(z) = (/o4')(z)       (zeU).

Theorem 1. (3) Let *¥:U -> t/ be holomorphic. Then, for q > p , C^: Nq -* Np

is a continuous algebra homomorphism.

(4) Suppose V: Nq —► Np is a nontrivial algebra homomorphism. Then there

exists ^:U -* U, holomorphic, such that Yf = C^f (f e Nq). Hence, if
q > p, then T is continuous.

(5) Suppose T: Nq —► Np is an algebra homomorphism onto Np. Then

p = q and T is an isomorphism. The map *¥; Ü —♦ U, determined by T, is a

conformai map onto U and T-   = CT_, .
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Proof. (3) Let f e Nq. Then from (1) with w = T(z), (2.5) in [4], and
Holder's inequality we have, for 0 < r < 1 ,

(27t)-1 [\\og(l + \(foV)(reie)\))pdd
7o

This shows that fo*¥ e Np and, at the same time, that dp(Cvf, 0) < Kdq(f, 0)

with a constant K independent of /. Thus Cy is continuous. (4) This part

is the same as in [4]. (5) T is written in the form T = C^, by (4). *¥{U)

is a nonempty open subset of U, so Cw is one-to-one and T~ = C9 with

a holomorphic map C>: U —> U. From 4* o <p = <P o *P = identity, we see

that ¥ is a conformai map of U onto U. Finally, suppose q < p and let

f(z) = exp((l - z)~a) with p~l < a < q~l. Then f £ Np and f e Nq , so

CT/ e Np by assumption. But we can conclude from (3) that / = C^C^f)

belongs to Np, a contradiction. From C0: Afp —» /V* we see that p > q,

as well.

3. Outer functions in Np

It is well known that if f e Nt, then log|/*| e Ll(T). f e Np does

not imply, however, that log|/*| e LP(T), while log+ |/*| e LP(T). Indeed,

/(f):= exp(//[^](z)) (z G U) with ^(e") = -rl/p (r e (0,2tc]) belongs to

H°° , but log|/*| <£ LP(T). Now let

/(z) = aexp(/7[log0](z))       (z € U),

where </>(<?") > 0 , logcp e Ll(T), log+ <\> e LP(T), and a e C with |a| = 1.

We shall call / an outer function in Np . If f e Np , f ^ 0, then / admits

the factorization: / = BSF, as a function in Nt, where B is the Blaschke

product with respect to the zeros of /, S is a singular inner function, and F

is an outer function in Nt. Here, since F = aexp(H[log\f*\]), F becomes

an outer function in Np . In 7Vt, / is outer if and only if /_ e Nt. But an

outer function in Np is not necessarily invertible in Np, as is seen from the

example / suchthat log|f*\ £ LP(T).

Let f e Np . If there is a sequence {fk} c Np such that fkf —> 1 in Np

as k —» oo, we shall call {fk} an approximate inverse of f. This concept

characterizes the outer functions in Np , as follows.

Theorem 2. Let f e Np . Then f is outer if and only if f has an approximate

inverse. When this is the case, f is approximated by invertible functions in Np .

Proof. Suppose first that / is outer in Np, with a — l:f(z) = exp(H[\og(¡>]

(z))(ze U). Let Ek = {/e[0,27r]|^(e")>Â:_1} and Gk = {t\4>(eu) < k~1}.

Put <ftkie") = «¿(e")-1 for t e Ek and <f>kie") =1 for t eGk (k = I ,2 , ...).
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Then log^ e L (T) and log4"^ e LP(T), hence fk := exp(H[\og(pk]) be-

longs to N". Put y/k(eu) = 1 for te Ek and yfk(en) = (t>(eil) for t eGk.

Then fk(z)f(z) = exp(H[logif/k](z)) = exp(F[log^J(z) + /^(z)), where vk =

Q\logy/k]. As r -+ 1, with z = re' , we have F[logyfc]*(e' ) = logy/k(e' )

for a.e.   6 e [0,2tc], and vk(e  ) also exists for a.e.   6  [2, p. 103].   Thus

fk(eie)f*(e'6) = y/k(eie)exp(iv*k(eie)). Take q, 0 < q < 1. By Theorem 4.2

in [1], we see that M?(^ ;r) < CqMx(P[logy/k];r) < Cfl||log^||, (0 < r < 1),

where C is a constant depending only on q, and hence \\vk\\ < C 11 log ^fe11, ,

by Fatou's lemma. Since the right side tends to 0 as k —► oo, by the domi-

nated convergence theorem, a subsequence of {v*k} , denoted by the same sym-

bol again, tends to 0 for a.e. 6 e [0,2n]. Hence fk(eie)f*(eie) -+ 1 as

k —► oo, for a.e. 6 . Now from log(l + \fkf* - l\) < log3, we conclude that

dp(fkf,1)^0.
Next suppose that f e Np and {fk} is an approximate inverse of /.

Then we have fk(z)f(z) —► 1 (z e U) as k —► oo, so f(z) / 0 (z e [/).

Thus the factorization of / is of the form / = S F, with 5" a singular in-

ner function and F outer in Np . It is enough to see that S- e Np, since

this implies that S is a constant. Now we have fkfS~ = fkF e Np and

fk(z)f(z)S~\z) — S~\z) (z e U) as k -► oo. Since \(S~])*\ = 1 a.e. on

T, we see that d^f/S'1 ,fkfS~l) = dp(f;f JJ) - 0 as j ,k - oo. Thus

{/*/£"'} converges to some h e Np , so /fc(z)/(z)5'_1(z) -» h(z) (zeU).

Finally, let / be outer in Np and define fk as above. Put gk= fk . Then,

since log+ 07/' = log+ <f> e Lp(T),-we see that gke Np , i.e., g^ is invertible in

TV" . Moreover, \g*k(eie)\ = \f(e'e)\ for Ö e Ek and |^"(e'e)| = 1 for 6 e Gk .

Therefore, we have \g¡ - f\ = |^*| \fkf - 1| < (\f\ + l)\f*f - 1|, the right
side tending to 0 as k-*oo,a.e. on F. From log(l + \gk-f*\) < \og(2+2\f*\),

we see that d (gk ,/)—»• 0 as A: -♦ oo .

Remark. Let 5 be a singular inner function. Then Sr (0 < r < 1) is invertible

in Np , and 5f —► S as r —» 1 (Theorem 4.2, [5]). This means that the converse

of the second statement of Theorem 2 is not valid.

Corollary. Let f e Np . Then fNp, the ideal generated by f, is dense in Np

if and only if f is outer.

4. Some ideals in Np

Theorem 2 above enables us to deduce the following, which are analogues of

Theorems 1 and 2 in [4].

Theorem 3. Let M be a nonzero prime ideal in Np which is not dense in Np .

Then M = Mx := {/ e Np\f(X) = 0} for some keU. Every closed maximal

ideal is of the form M,.
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Theorem 4. Let M be a nonzero closed ideal in Np . Then there exists a unique

(modulo constants) inner function I such that M — INP .

Proof. For the proof of Theorem 3, let / e M, / # 0. Then / = BSF,
where F £ M by the above corollary, so we have BS e M. The remainder of

the argument is completely analogous to that of [4]. For the proof of Theorem

4, let / = BSF , f e M, f ^ 0. Take an approximate inverse {fk} of F.

Then fkf = BS(fkF) —► BS as k —► oo, so we have BS e M and hence

BS e M n H[ . The rest is the same as that of [4].
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