# ALGEBRAS OF HOLOMORPHIC FUNCTIONS BETWEEN $H^{p}$ AND $N_{*}$ 

NOZOMU MOCHIZUKI

(Communicated by Paul S. Muhly)


#### Abstract

For the algebra $N^{p}, p>1$, introduced by Stoll with the notation $\left(\log ^{+} H\right)^{\alpha}$ in [5], a characterization of the outer functions will be given, which can be used to derive results analogous to those of $N_{*}$ [4].


## 1. The algebra $N^{p}$

In this section, some introductory remarks will be made. Let $U$ and $T$ denote the unit disk in $\mathbf{C}$ and the unit circle. For $\phi \in L^{1}(T)$, a holomorphic function $H[\phi]$ is defined by

$$
H[\phi](z)=(2 \pi)^{-1} \int_{0}^{2 \pi} H\left(z, e^{i t}\right) \phi\left(e^{i t}\right) d t \quad(z \in U),
$$

where $H\left(z, e^{i t}\right)=\left(e^{i t}+z\right)\left(e^{i t}-z\right)^{-1}$. Note that $H=P+i Q$, with $P$ the Poisson kernel. $P[\phi]$ will denote the Poisson integral. We denote by $N^{p}$, for $p>1$, the class of functions $f$ holomorphic in $U$ and satisfying

$$
\sup _{0<r<1} \int_{0}^{2 \pi}\left(\log ^{+}\left|f\left(r e^{i t}\right)\right|\right)^{p} d t<+\infty .
$$

If $f \in N^{p}$, then $\log \left(1+\left|f^{*}\right|\right) \in L^{p}(T)$ and

$$
\begin{equation*}
(\log (1+|f(w)|))^{p} \leq P\left[\left(\log \left(1+\left|f^{*}\right|\right)\right)^{p}\right](w) \quad(w \in U), \tag{1}
\end{equation*}
$$

where $f^{*}$ is the boundary function of $f$ on $T$. Under the metric $d_{p}$, defined for $f, g \in N^{p}$ by

$$
d_{p}(f, g)=\left((2 \pi)^{-1} \int_{0}^{2 \pi}\left(\log \left(1+\left|f^{*}\left(e^{i t}\right)-g^{*}\left(e^{i t}\right)\right|\right)\right)^{p} d t\right)^{1 / p},
$$

$N^{p}$ becomes an $F$-algebra. For $f \in N^{p}$,(1) implies that

$$
\begin{equation*}
\log (1+|f(w)|) \leq 2^{1 / p} d_{p}(f, 0)(1-|w|)^{-1 / p} \quad(w \in U) . \tag{2}
\end{equation*}
$$

Received by the editors July 5, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 30H05, 46J15; Secondary 46J20.

It is known that

$$
N^{q} \subset N^{p}(q>p), \quad \bigcup_{p>0} H^{p} \subset \bigcap_{p>1} N^{p}, \quad \text { and } \bigcup_{p>1} N^{p} \subset N_{*},
$$

where the first containment is proper. To see that the second is proper, let $\phi\left(e^{i t}\right)=(\log t)^{2}(t \in(0,2 \pi])$. Then $\phi \in L^{p}(T)$ for all $p>1$ and $e^{\phi} \notin$ $L^{p}(T)$ for any $p>0$. Define $f$ by $f(z)=\exp (H[\phi](z))(z \in U)$. Since $\left(\log ^{+}|f(z)|\right)^{p} \leq P\left[\phi^{p}\right](z)$, we have $f \in N^{p}$ for all $p>1$. On the other hand, $\left|f^{*}\right|=e^{\phi}$ a.e. on $T$ implies that $f \notin H^{p}$, for $p>0$. Next let $\psi\left(e^{i t}\right)=t^{-1}(1+|\log t|)^{-2}(t \in(0,2 \pi])$ and define $f$ by $f(z)=\exp (H[\psi](z))$. Since $\psi \in L^{1}(T)$ and $\log ^{+}|f(z)|=P[\psi](z)$, the uniform integrability of the functions $\left\{\log ^{+}\left|f_{r}\left(e^{i t}\right)\right| \mid 0<r<1\right\}$ follows, i.e., $f \in N_{*}$, and $\log ^{+}\left|f^{*}\right|=\psi \notin$ $L^{p}(T), p>1$, implies $f \notin N^{p}, p>1$. Thus the third containment is also proper.

If $f^{\prime} \in H^{p}, 0<p<1$, then $f \in H^{q}$ with $q=p(1-p)^{-1}$ (HardyLittlewood, [1]). On the other hand, $f^{\prime} \in N$ does not imply $f \in N$ (Hayman, [3]). Further, $f^{\prime} \in N_{*}$ does not imply $f \in N$ (Yanagihara, [6]). In contrast to $H^{p}, N_{*}$, and $N$, the class $N^{p}$ has the following property: If $f^{\prime} \in N^{p}$, then $f \in N^{p}$. If $q>p$, then there exists $f$ such that $f^{\prime} \in N^{p}$, yet $f \notin N^{q}$. The former is easily seen by a maximal function argument [3, p. 183]. To see the latter, let $f(z)=\exp \left((1-z)^{-\alpha}\right)(z \in U)$ with $q^{-1}<\alpha<p^{-1}$. Since $(1-z)^{-\alpha} \in H^{p}$, we have $f \in N^{p}$ and hence $f^{\prime}(z)=\alpha f(z)(1-z)^{-\alpha-1} \in N^{p}$. Let $M_{\infty}(f ; r)=\operatorname{Max}\{|f(z)||z|=r\}$. Then $\log ^{+} M_{\infty}(f ; r)=(1-r)^{-\alpha}(0<$ $r<1)$, and hence $(1-r)^{1 / q} \log ^{+} M_{\infty}(f ; r) \rightarrow+\infty$ as $r \rightarrow 1$. It follows from (2) that $f \notin N^{q}$.

## 2. Algebra homomorphisms

By the same argument as in [4], we can prove that if $\gamma$ is a nontrivial multiplicative linear functional on $N^{p}$, then there exists $\lambda \in U$ such that $\gamma(f)=f(\lambda)\left(f \in N^{p}\right)$ and $\gamma$ is continuous, by (2). This fact will be used to see part (4) of the following Theorem 1.

Let $\Psi: U \rightarrow U$ be a holomorphic map. For $f$ holomorphic on $U$, we define $C_{\Psi} f$ by

$$
\left(C_{\Psi} f\right)(z)=(f \circ \Psi)(z) \quad(z \in U)
$$

Theorem 1. (3) Let $\Psi: U \rightarrow U$ be holomorphic. Then, for $q \geq p, C_{\Psi}: N^{q} \rightarrow N^{p}$ is a continuous algebra homomorphism.
(4) Suppose $\Gamma: N^{q} \rightarrow N^{p}$ is a nontrivial algebra homomorphism. Then there exists $\Psi: U \rightarrow U$, holomorphic, such that $\Gamma f=C_{\Psi} f\left(f \in N^{q}\right)$. Hence, if $q \geq p$, then $\Gamma$ is continuous.
(5) Suppose $\Gamma: N^{q} \rightarrow N^{p}$ is an algebra homomorphism onto $N^{p}$. Then $p=q$ and $\Gamma$ is an isomorphism. The map $\Psi: U \rightarrow U$, determined by $\Gamma$, is a conformal map onto $U$ and $\Gamma^{-1}=C_{\Psi-1}$.

Proof. (3) Let $f \in N^{q}$. Then from (1) with $w=\Psi(z)$, (2.5) in [4], and Hölder's inequality we have, for $0<r<1$,

$$
\begin{aligned}
& (2 \pi)^{-1} \int_{0}^{2 \pi}\left(\log \left(1+\left|(f \circ \Psi)\left(r e^{i \theta}\right)\right|\right)\right)^{p} d \theta \\
& \quad \leq \frac{1+|\Psi(0)|}{1-|\Psi(0)|}\left((2 \pi)^{-1} \int_{0}^{2 \pi}\left(\log \left(1+\left|f^{*}\left(e^{i t}\right)\right|\right)\right)^{q} d t\right)^{p / q} .
\end{aligned}
$$

This shows that $f \circ \Psi \in N^{p}$ and, at the same time, that $d_{p}\left(C_{\Psi} f, 0\right) \leq K d_{q}(f, 0)$ with a constant $K$ independent of $f$. Thus $C_{\Psi}$ is continuous. (4) This part is the same as in [4]. (5) $\Gamma$ is written in the form $\Gamma=C_{\Psi}$, by (4). $\Psi(U)$ is a nonempty open subset of $U$, so $C_{\Psi}$ is one-to-one and $\Gamma^{-1}=C_{\Phi}$ with a holomorphic map $\Phi: U \rightarrow U$. From $\Psi \circ \Phi=\Phi \circ \Psi=$ identity, we see that $\Psi$ is a conformal map of $U$ onto $U$. Finally, suppose $q<p$ and let $f(z)=\exp \left((1-z)^{-\alpha}\right)$ with $p^{-1}<\alpha<q^{-1}$. Then $f \notin N^{p}$ and $f \in N^{q}$, so $C_{\Psi} f \in N^{p}$ by assumption. But we can conclude from (3) that $f=C_{\Phi}\left(C_{\Psi} f\right)$ belongs to $N^{p}$, a contradiction. From $C_{\Phi}: N^{p} \rightarrow N^{q}$ we see that $p \geq q$, as well.

## 3. Outer functions in $N^{p}$

It is well known that if $f \in N_{*}$, then $\log \left|f^{*}\right| \in L^{1}(T) . \quad f \in N^{p}$ does not imply, however, that $\log \left|f^{*}\right| \in L^{p}(T)$, while $\log ^{+}\left|f^{*}\right| \in L^{p}(T)$. Indeed, $f(z):=\exp (H[\psi](z))(z \in U)$ with $\psi\left(e^{i t}\right)=-t^{-1 / p}(t \in(0,2 \pi])$ belongs to $H^{\infty}$, but $\log \left|f^{*}\right| \notin L^{p}(T)$. Now let

$$
f(z)=a \exp (H[\log \phi](z)) \quad(z \in U),
$$

where $\phi\left(e^{i t}\right) \geq 0, \log \phi \in L^{1}(T), \log ^{+} \phi \in L^{p}(T)$, and $a \in \mathbf{C}$ with $|a|=1$. We shall call $f$ an outer function in $N^{p}$. If $f \in N^{p}, f \neq 0$, then $f$ admits the factorization: $f=B S F$, as a function in $N_{*}$, where $B$ is the Blaschke product with respect to the zeros of $f, S$ is a singular inner function, and $F$ is an outer function in $N_{*}$. Here, since $F=a \exp \left(H\left[\log \left|f^{*}\right|\right]\right), F$ becomes an outer function in $N^{p}$. In $N_{*}, f$ is outer if and only if $f^{-1} \in N_{*}$. But an outer function in $N^{p}$ is not necessarily invertible in $N^{p}$, as is seen from the example $f$ such that $\log \left|f^{*}\right| \notin L^{p}(T)$.

Let $f \in N^{p}$. If there is a sequence $\left\{f_{k}\right\} \subset N^{p}$ such that $f_{k} f \rightarrow 1$ in $N^{p}$ as $k \rightarrow \infty$, we shall call $\left\{f_{k}\right\}$ an approximate inverse of $f$. This concept characterizes the outer functions in $N^{p}$, as follows.

Theorem 2. Let $f \in N^{p}$. Then $f$ is outer if and only if $f$ has an approximate inverse. When this is the case, $f$ is approximated by invertible functions in $N^{p}$.
Proof. Suppose first that $f$ is outer in $N^{p}$, with $a=1: f(z)=\exp (H[\log \phi]$ $(z))(z \in U)$. Let $E_{k}=\left\{t \in[0,2 \pi] \mid \phi\left(e^{i t}\right) \geq k^{-1}\right\}$ and $G_{k}=\left\{t \mid \phi\left(e^{i t}\right)<k^{-1}\right\}$. Put $\phi_{k}\left(e^{i t}\right)=\phi\left(e^{i t}\right)^{-1}$ for $t \in E_{k}$ and $\phi_{k}\left(e^{i t}\right)=1$ for $t \in G_{k}(k=1,2, \ldots)$.

Then $\log \phi_{k} \in L^{1}(T)$ and $\log ^{+} \phi_{k} \in L^{p}(T)$, hence $f_{k}:=\exp \left(H\left[\log \phi_{k}\right]\right)$ belongs to $N^{p}$. Put $\psi_{k}\left(e^{i t}\right)=1$ for $t \in E_{k}$ and $\psi_{k}\left(e^{i t}\right)=\phi\left(e^{i t}\right)$ for $t \in G_{k}$. Then $f_{k}(z) f(z)=\exp \left(H\left[\log \psi_{k}\right](z)\right)=\exp \left(P\left[\log \psi_{k}\right](z)+i v_{k}(z)\right)$, where $v_{k}=$ $Q\left[\log \psi_{k}\right]$. As $r \rightarrow 1$, with $z=r e^{i \theta}$, we have $P\left[\log \psi_{k}\right]^{*}\left(e^{i \theta}\right)=\log \psi_{k}\left(e^{i \theta}\right)$ for a.e. $\theta \in[0,2 \pi]$, and $v_{k}^{*}\left(e^{i \theta}\right)$ also exists for a.e. $\theta$ [2, p. 103]. Thus $f_{k}^{*}\left(e^{i \theta}\right) f^{*}\left(e^{i \theta}\right)=\psi_{k}\left(e^{i \theta}\right) \exp \left(i v_{k}^{*}\left(e^{i \theta}\right)\right)$. Take $q, 0<q<1$. By Theorem 4.2 in [1], we see that $M_{q}\left(v_{k} ; r\right) \leq C_{q} M_{1}\left(P\left[\log \psi_{k}\right] ; r\right) \leq C_{q}\left\|\log \psi_{k}\right\|_{1}(0<r<1)$, where $C_{q}$ is a constant depending only on $q$, and hence $\left\|v_{k}^{*}\right\|_{q} \leq C_{q}\left\|\log \psi_{k}\right\|_{1}$, by Fatou's lemma. Since the right side tends to 0 as $k \rightarrow \infty$, by the dominated convergence theorem, a subsequence of $\left\{v_{k}^{*}\right\}$, denoted by the same symbol again, tends to 0 for a.e. $\theta \in[0,2 \pi]$. Hence $f_{k}^{*}\left(e^{i \theta}\right) f^{*}\left(e^{i \theta}\right) \rightarrow 1$ as $k \rightarrow \infty$, for a.e. $\theta$. Now from $\log \left(1+\left|f_{k}^{*} f^{*}-1\right|\right) \leq \log 3$, we conclude that $d_{p}\left(f_{k} f, 1\right) \rightarrow 0$.

Next suppose that $f \in N^{p}$ and $\left\{f_{k}\right\}$ is an approximate inverse of $f$. Then we have $f_{k}(z) f(z) \rightarrow 1(z \in U)$ as $k \rightarrow \infty$, so $f(z) \neq 0(z \in U)$. Thus the factorization of $f$ is of the form $f=S F$, with $S$ a singular inner function and $F$ outer in $N^{p}$. It is enough to see that $S^{-1} \in N^{p}$, since this implies that $S$ is a constant. Now we have $f_{k} f S^{-1}=f_{k} F \in N^{p}$ and $f_{k}(z) f(z) S^{-1}(z) \rightarrow S^{-1}(z)(z \in U)$ as $k \rightarrow \infty$. Since $\left|\left(S^{-1}\right)^{*}\right|=1$ a.e. on $T$, we see that $d_{p}\left(f_{j} f S^{-1}, f_{k} f S^{-1}\right)=d_{p}\left(f_{j} f, f_{k} f\right) \rightarrow 0$ as $j, k \rightarrow \infty$. Thus $\left\{f_{k} f S^{-1}\right\}$ converges to some $h \in N^{p}$, so $f_{k}(z) f(z) S^{-1}(z) \rightarrow h(z)(z \in U)$.

Finally, let $f$ be outer in $N^{p}$ and define $f_{k}$ as above. Put $g_{k}=f_{k}^{-1}$. Then, since $\log ^{+} \phi_{k}^{-1}=\log ^{+} \phi \in L^{p}(T)$, we see that $g_{k} \in N^{p}$, i.e., $g_{k}$ is invertible in $N^{p}$. Moreover, $\left|g_{k}^{*}\left(e^{i \theta}\right)\right|=\left|f^{*}\left(e^{i \theta}\right)\right|$ for $\theta \in E_{k}$ and $\left|g_{k}^{*}\left(e^{i \theta}\right)\right|=1$ for $\theta \in G_{k}$. Therefore, we have $\left|g_{k}^{*}-f^{*}\right|=\left|g_{k}^{*}\right|\left|f_{k}^{*} f^{*}-1\right| \leq\left(\left|f^{*}\right|+1\right)\left|f_{k}^{*} f^{*}-1\right|$, the right side tending to 0 as $k \rightarrow \infty$, a.e. on $T$. From $\log \left(1+\left|g_{k}^{*}-f^{*}\right|\right) \leq \log \left(2+2\left|f^{*}\right|\right)$, we see that $d_{p}\left(g_{k}, f\right) \rightarrow 0$ as $k \rightarrow \infty$.
Remark. Let $S$ be a singular inner function. Then $S_{r}(0<r<1)$ is invertible in $N^{p}$, and $S_{r} \rightarrow S$ as $r \rightarrow 1$ (Theorem 4.2, [5]). This means that the converse of the second statement of Theorem 2 is not valid.

Corollary. Let $f \in N^{p}$. Then $f N^{p}$, the ideal generated by $f$, is dense in $N^{p}$ if and only if $f$ is outer.

## 4. Some ideals in $N^{p}$

Theorem 2 above enables us to deduce the following, which are analogues of Theorems 1 and 2 in [4].

Theorem 3. Let $M$ be a nonzero prime ideal in $N^{p}$ which is not dense in $N^{p}$. Then $M=M_{\lambda}:=\left\{f \in N^{p} \mid f(\lambda)=0\right\}$ for some $\lambda \in U$. Every closed maximal ideal is of the form $M_{\lambda}$.

Theorem 4. Let $M$ be a nonzero closed ideal in $N^{p}$. Then there exists a unique (modulo constants) inner function $I$ such that $M=I N^{p}$.
Proof. For the proof of Theorem 3, let $f \in M, f \neq 0$. Then $f=B S F$, where $F \notin M$ by the above corollary, so we have $B S \in M$. The remainder of the argument is completely analogous to that of [4]. For the proof of Theorem 4, let $f=B S F, f \in M, f \neq 0$. Take an approximate inverse $\left\{f_{k}\right\}$ of $F$. Then $f_{k} f=B S\left(f_{k} F\right) \rightarrow B S$ as $k \rightarrow \infty$, so we have $B S \in M$ and hence $B S \in M \cap H^{1}$. The rest is the same as that of [4].

## References

1. P. L. Duren, Theory of $H^{p}$ spaces, Academic Press, New York, 1970.
2. J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
3. W. K. Hayman, On the characteristic of functions meromorphic in the unit disk and of their integrals, Acta Math. 112 (1964), 181-214.
4. J. W. Roberts and M. Stoll, Prime and principal ideals in the algebra $N^{+}$, Arch. Math. 27 (1976), 387-393. Correction, ibid. 30 (1978), 672.
5. M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977), 139-158.
6. N. Yanagihara, On a class of functions and their integrals, Proc. London Math. Soc. 25 (1972), 550-576.

College of General Education, Tôhoku University, Kawauchi, Sendai 980, Japan

