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THE BEHNKE-STEIN THEOREM FOR

OPEN RIEMANN SURFACES

R. R. SIMHA

(Communicated by Irwin Kra)

Abstract. Using the Riemann-Roch theorem and the set-topological part of

Bishop's special polyhedron lemma, we show that the usual Runge approxima-

tion theorem for compact subsets of the Riemann sphere is valid word-for-word

on any compact Riemann surface X , with meromorphic functions on X play-

ing the role of rational functions; this result is essentially equivalent to the

Behnke-Stein approximation theorem.

The Behnke-Stein generalization of the Runge approximation theorem [1],

which is the basic tool for many existence questions on open Riemann surfaces,

can be stated in several equivalent ways, for instance:

Let X be a Riemann surface, and K a compact subset of X. Then, in order

that every holomorphic function in a neighborhood of K be uniformly approx-

imate on K by holomorphic functions on X, it is necessary and sufficient

that X - K have no connected component with compact closure in X.

As is well known, the necessity part of the above theorem follows from the

sufficiency part (using the theory of compact Riemann surfaces). In this note,

we wish to point out how the famous "special polyhedron lemma" of Bishop

[2], which is an elementary set-topological result, can be used (together with the

Riemann-Roch theorem for compact Riemann surfaces) to give a simple proof

of the following theorem.

Theorem 1.1. Let X be a compact Riemann surface, and K c X a compact

subset. Let Q be any subset of X - K which contains (precisely) one point q¡

from each connected component W of X - K. Then any holomorphic function

on a neighborhood of K can be approximated uniformly on K by meromorphic

functions on X whose poles lie in Q.

Again it is well known and easy to see that Theorem 1.1 implies the sufficiency

part of Behnke-Stein. The main fact needed for this implication is the following:
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any relatively compact open subset of any Riemann surface can also be regarded

as an open subset of a compact Riemann surface. Observe that, when X = CUoo

is the Riemann sphere and icC, and we take ^ = 00 for the component

W of X - K containing 00, Theorem 1.1 reduces to the usual Runge theorem

in C ([3], p. 176).
The proof of Theorem 1.1 is given in §3; the preliminaries needed, which are

easy consequences of the Riemann-Roch theorem, are proved in §2. In §4, we

state Bishop's lemma precisely, and indicate how it is especially easy to apply

it in our case.

2. Preliminaries

Notation 2.1. For any open subset U of the compact Riemann surface X ,0(U)

(resp. M(U)) denotes the set of holomorphic (resp. meromorphic) functions

on U. For any A c X, MA(X) denotes the set of f e M(X) whose poles lie

in A.

For any divisor D = 2^n¡p¡ on X (finite sum with the p¡ distinct), L(D)

denotes the sheaf of germs of holomorphic sections of the line bundle L(D)

corresponding to D. For any open U c X, we make the usual identification

H°(U ,L(D)) = {/ e M(U):f has a zero (resp. pole) of order > -n¡ (resp.

< n¡) at each p¡ e U with n¡ < 0 (resp. > 0)} . The H°(U , L(D)) are Frechet

spaces in the topology of uniform convergence on compact subsets of U, e.g.

they can be regarded as closed subspaces of 0(U - Supp(D)),  Supp(D) =

{/>, ,P2, ■•■}■

We shall use the Riemann-Roch theorem for compact Riemann surfaces in

the following form.

There exists an integer ô(X) = ô such that, for any divisor D = J2njP¡ on

X with deg(£>) :=£«,.><*, HX(X ,L(D)) = 0. (As is well known, we can

take ô = 2g - 1, where g is the genus of X.)

Lemma 2.2. Fix q0 e X arbitrarily. Let px , ... ,pn be distinct points in X-q0,

and (U¡ ,z¡) coordinate charts at the p¡.  For 1 < i < n, let l¡ be Laurent

polynomials: 1¡(T) = J2j=_d a¡jTj e C[Z,/"'], d¡ integers >0. Then there

exists f e M(X), with poles at the most at q0,px , ... ,pn, such that, for each

i ,f - 1¡(Z¡) has a zero of order > d¡+ I at p¡.

Proof. Let D be the divisor dQq0-^2(d¡ + l)pl-, with d0 so large that deg(D) >

ô . We may suppose that the Ul are pairwise disjoint, and regard the 1¡(Z¡) as

defining a 1-cocycle for L(D) with respect to the covering (Ux , ... ,Un , X -

{p\ > •■ • >P„}) ■ This cocycle is a coboundary by Riemann-Roch, and the lemma

follows from this.

Corollary 2.3. For every p e X - q0, there exists f e Mp (X) with a simple

pole at p.

Lemma 2.4. Let p ,f be as in 2.3. Let a: I(= [0,l]cR)^I-«0 be a path

in X - q0. Then there is a continuous map t —► ft of I into M(X) such that
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(i) fo = fp> and (Ü) /, 6 M,t) and has a simple pole at a(t), for ail tel.

(The continuity of t -* ft means that the map (t ,x) -* ft(x) of I x X into

C U oo is continuous.)

Proof. Clearly, we may assume that there is a coordinate disc (U ,z) with

q0 <£ U and a(/) C U. Let V ce U be a smaller disc with a(I) c V.

There is a X e C*  such that f - X/(z - z(p)) is holomorphic in  U.   Put

ß(t) = z(a(t)), and regard t ->■ /, = A(z-ß(f))_1-A(z-j3(0))-1 as a continuous

map / -» /f°(t/ - F ,L(Sq0)) = 0(U -V). By Riemann-Roch, the obvious

sequence

0 -r» //°(X , L(¿90)) -> //°(X - V ,L(ôq0)) © 0(£/) -» 0(U - V} -*• 0

is exact. Moreover, //°(X ,L(ôqQ)) is finite dimensional, hence this sequence,

regarded as an exact sequence of continuous linear maps of Frechet spaces,

splits. (An explicit splitting is easy to give in this special case.) Hence we have

continuous maps / —► tpt, t —► i//t of I into H°(X - V ,L(SqQ)) and O(U)

respectively, such that tp0 = y/Q = 0 and <pt - y/t = l¡ on U—V. Setting gt = tpt

on X - V and lt + W, on U, we see that the family t -» f + gt, tel has the

desired properties.

Corollary 2.5. Let a:I —> X be a path with a(0) = p (■£ q0) and a(l) = q0.

Let K c X be a compact set with Kf)a(I) = 0. Then every f e M (X) can

be approximated uniformly on K by elements of Mqo(X).

Proof. We may assume a(t) ^ q0 for t < 1. Pick (e.g. using Lemma 2.2)

any nonconstant f e M (X). Let V be a neighborhood of qQ such that

inf{|/ (jf)|:x e V} > 2sup{\fqo(x)\:x e K}. Choose t' e I such that a(t') e

V. Let (f() be the functions constructed in 2.4 for the path q[0 , t']. Clearly,

we can subdivide [0,i']:0 = t0 < tx < ■ ■ ■ < tn = t' such that \fl.(a(t¡_x))\ >

2M ,i = 1 , ... ,n , where M := sup{|/((x)|:0 < t < Í ,x e K} (< oo).

Now let feMp JX). Then f(ft¡ -ft¡ (p))m e Ma{í¡)JX) for some integer

m>0. And (fh(p)-fti)~l = fh(p)~\l-ftJ fti(p))~X can be approximated on
K by a polynomial in ft using the geometric series. Repeating this argument

n - 1 more times, we see that / can be approximated on K by elements of

M,tl) (X). The same argument, repeated this time using f , shows that any

g e M,t,. qo(X) can be approximated on K by elements of M (X), and the

corollary is proved.

3

We now come to the proof of Theorem 1.1. With the notation of 1.1, let

U D K be an open set. For each p edU, there exists f e MAX) with a pole

at p. We may assume that \f\< 1 on K. Let Vp be a neighborhood of p

such that \f\ > 2 on V . Finitely many of the Vp, say Vp¡ , ... , V   , cover
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d U . Thus, with

V := {x e U: \fp¡(x)\ < I for I- < i < m}

we have K c V ce U. By the procedure due to Bishop [2] (see §4), we can

then find a <p e M(X) which is in fact a polynomial in the / , and an open

set V0 c V, such that K c VQ, and <p: VQ -* A (= {\z\ < 1} c C} is a proper

map. Hence it is clear that the following lemma, together with Corollary 2.5,

implies Theorem 1.1.

Lemma 3.1. Let V0 be any open subset of X, and <p: V0 —> A a proper holo-

morphic map to the unit disc in C. Let q0 e X - V0 be arbitrary. Then any

h e O(V0) can be approximated uniformly on any compact subset K of V0 by

polynomials in <p and the elements of M (X).

Proof. Since y>: V0 —► A is a proper map, there exists a discrete subset E of A

such that <p: V0 — tp~l(E) —► A - E is a (possibly disconnected) finite-sheeted

(say «-sheeted) covering. Pick some z0 e A - E : by Lemma 2.2, there exists

q>x e Mqa(X) taking n distinct values on tp~](ZQ). Let P(z ,T) e 0(A)[T]

be the monic polynomial of degree « , defined for z e A- E by P(z , /) =

Tl9(p)=ÁT-<PÁP))- Define V e O(V0) by W(P) = (dP/dT)(tp(p),<px(p)).

Then y/ =£ 0 on any connected component of V0, since y/ ̂  0 on tp~ (z0).

Now, for any disc Ax c A, and Vx := ç>~ (A,), consider, for any h e 0(VX),

the polynomial Qh e 0(A)[/], defined for z e A, - E by

Qh(z,T) = J2h(p¡)\[(T-<px(Pj)),
1=1 }*i

where {px , ... ,pn} = (p~\z). Then Qh((p(p) ,<px(p)) = h(p)y/(p) for p e

Vx - <p~{(E) by definition, hence for all p e V{ .

Now we can choose A, cc A such that <p(K) c A, . Then Vx C<Z Vq , hence

y/ has only finitely many zeros in Vx . Hence, for any given h e 0(VX), we

can find (by Lemma 2.2) a f2e M (X) such that h - <p2 is divisible by yi in

0(VX): say h - <p2 = y/h'. But y(p')h'(p) = Qh,(tp(p) ,<px(p)) for the Qh, e
0(Ax)[T] constructed above. Thus, using Taylor expansions to approximate

the coefficients of Qh, on <p(K), we see that y/h can be approximated on

K € <p~ (<p(K)) by polynomials in tp and <px .   G

4. Bishop's Lemma

We state below the lemma of Bishop used in §3. Since we have not found

a reference where the result is proved in the stated form, we first state the two

simple facts using which the lemma can be easily proved.
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Lemma 4.1 ([2], p. 222). For v > 1, the set {z e C: \zv - l\ < \} is contained

in the union of the v pairwise disjoint sets

Wk,, = \(\)      <lzl<(|)      ,|argz-2rC7r/z/|<7T/4 ,fc = 0, ... ,i/-l ;

the diameter of' Wk v is 0(v    ) as v —> oo.

Lemma 4.2. Let Y, Z be metric spaces, with Y compact, and f:Y —* Z a

continuous map with totally disconnected fibers. Then, for every e > 0, there

exists ô > 0 such that every connected subset of Y of diameter > e has

f-image of diameter > ô .

The argument of Bishop [2] for his proof of Theorem 2 (p. 221 of [2]) proves

exactly the following Lemma 4.3: 4.2 can be used in place of the function theory

on p. 223 of [2].

Bishop's Lemma 4.3. Let U be a locally compact locally arcwise-connected met-

ric space, and f¡:U —> C continuous functions 1 < i < m. Let V ce U be an

open subset such that f = (fx , ... ,fm) maps V properly into the unit polydisc

{Z¡ < I ,1 < i < m} in Cm. Let Ux = {x e U:fx(X) ¿ 0}, and suppose the

map g = (f2/fx , ... ,fm/f{)'- Ux —* Cm~ has totally disconnected fibers. Then,

for any compact K c V, there exist r > 1 and a positive integer v such that

the set

V' = {xe U: \(rfx(x))v - (rfj(x))\ < I ,j = 2 , ... ,m}

contains K, and the union VQ of the connected components of V' meeting K is

contained in V. Hence V0 ce U, and the m-l functions (rfxY - (rf)v ,j =

2 , ... ,m map VQ properly into the unit polydisc in Cm~ .

We conclude with the observation that, in our applications of this lemma,

the condition that the map g: Ux —► Cm~' have discrete fibers is automatically

satisfied. This is because the f¡ will be holomorphic functions on a connected

Riemann surface X' containing U as an open set. Thus g will fail to satisfy

the required condition only if g = Lgx ,l€Cj> 2. In this case, it is

obvious that a suitable constant multiple (p := Xgx will already have the desired

property that <p: V —> A be a proper map. Thus, after at the most m - 1

applications of Bishop's lemma, we will have V0 and <p as required in §3.
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