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Abstract. Assume T is a bounded linear operator on some Banach space

Y, and that T has a bounded extension T on another space. In general

almost nothing can be said concerning the relationship between the spectral and

Fredholm properties of T and T . However, assuming the special condition

that the range of T lies in K , it is shown that these properties are essentially

the same for T and T .

1. Introduction

Let A be a Banach space, and let Y be a subspace of X which is also a

Banach space. Assume the embedding of Y into X is continuous. Let âS(X)

denote the algebra of all bounded linear operators on X. In this paper we are

concerned with the situation where Tg¿%(Y) has an extension Tç.âS(X). In

this case it is often of interest to know how the spectral and Fredholm properties

of T relate to those of T. In fact, not much can be said in general, as is

apparent from the three examples at the end of this section. There is one

general result concerning the spectrum:

I. Assume Y is dense in X. It follows from a theorem of S. Grabiner

[7, Theorem 2.1] or from a theorem of B. Barnes [2, Theorem 4.5] that every

component of a(T) (the spectrum of T ) has nonempty intersection with a(T),

and every component of a(T) has nonempty intersection with a(T).

Other results are known in special situations:

II. Assume Y has a bounded innerproduct, and X is the Hubert space

completion of Y in the norm determined by the innerproduct. When T G

¿S(Y) and T is symmetric with respect to the innerproduct, then P. Lax proved

that T has an extension T G âS(X) and a(T) ç a(T) [11]. Generalizations

of this result, and some related results, are proved in [9, pp. 364-366].
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III. In a situation similar to (II), but assuming only that T is symmetric

with respect to a bounded pre-innerproduct on Y, then T inherits many of the

special properties of the self-adjoint extension T provided that T(X) ç Y . In

particular, T has a rich operational calculus defined in terms of the operational

calculus of the self-adjoint operator T. These results are contained in [3].

In order to illustrate the problems inherent in the general situation we give

three examples. The notation here is

o)(S) = {a g C: k - S is not a Fredholm operator},

W(S) = {k G C: k - S is not a Fredholm operator of index zero}.

Thus, co(S) is the usual Fredholm (or essential) spectrum of an operator S,

while W(S) is the Weyl spectrum of 51.

Example 1. Let D = {zgC:|z|<1}. Let Y be the disk algebra, the space

of all continuous functions on D which are holomorphic on the interior of D

[13, p 2]. The complete norm on Y is

||/|| = sup{|/(z)|:zGZ)}       (feY).

Consider the norm on Y

ll/llo = sup{|/(l//i)|:«>l}       (fGY).

Let X be the completion of Y with respect to this norm. Then X is iso-

metrically isomorphic to the classical Banach space of all complex convergent

sequences. Define T g3§(Y) by

T(f)(z) = zf(z)        (fGY).

Then T has an extension T G 38(X). Also, T is a compact operator on X,

o(T) = {0} U {1/n: n > 1}, and œ(T) = {0}.   For T on the other hand,

(j(T) = Oj(T) = D .

Example 2. Let Y be the Banach space of all sequences a = W^T=\ sucn tnat'klk

hii

k=\

oo

|a||y = ¿^2 [ak[ < +00.

2
Then y is a dense subspace of X = I . Let V and W be the unilateral shift

and backward shift acting on Y, and let V and W be their extensions to X.

Set T - 21 + V + W. Define

ri^{X = x + iy,x,yGR: (2/5)2(x - 2)2 + (2/3)V < 1}.

In [12, p. 150] J. Nieto shows that a(T) = W(T) = Cl, and co(T) = dQ., while
ct(7) = W(T) = tü(T) = {x G R: 0 < x < 4}. Note that T is self-adjoint.

Example 3. Define T on /' by T({ak}) = {bk} where bk = (ak+x)/(k+ 1),

k > 1  ( T is a weighted backward shift). The operator T is compact on / ,
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and a(T) = {0} . Now let X be the space of all complex sequences a = {ak}

such that
oo

NI^EtWKK+oo.
fc=i

Certainly /' can be identified as a subspace of X. Also, T({ak}) = {bk}

with bk as above is a bounded extension of T on I. Define V : I —► X by

V({ak)) = ivk^ where vk = k\ak , k > 1 . Then V is an isometry of / onto

X. It is easy to calculate that V~ TV is the usual backward shift on / . Thus,

a(T) = D, W{T) = D, œ(T) = {k: ]k[ = l},and ind(A-7) = 1 for k G C,

|A|< 1.

As seen in Examples 1-3 the spectral and Fredholm properties of T and T

can be wildly different in general. In this paper we make the special assumption

that T(X) ç Y, and with this assumption it is shown that the spectral and

Fredholm properties of T and T are essentially the same. This is done in §2.

In §3 an application to operators on Lebesgue spaces is given.

2. The spectral theory of extensions

As before X and Y are Banach spaces with Y continuously embedded in

X. We assume that Y ^ X throughout. We are concerned with the situation

where T g £f(Y) has an extension 7 g 38 (X). Let £ be the set of all

operators T G 38 (Y) which have an extension T G 38(X) with the property

7(A) ç Y. Note that £ is a left ideal in 38(Y), a fact that will be exploited

in what follows.

In the Fredholm theory of operators in 38(Y), an important role is played

by the ideal of finite rank operators in 38(Y). We denote this ideal by &~(Y).

An operator in ^(Y) with one-dimensional range has the form a®y where

y G Y and a G Y1 (Y1 is the dual space of Y). The operator a®y acts

according to the rule

a®y(z) - a(z)y       (z G Y).

For T G 38(X), let 3t(T) be the range of T and JT(T) be the null space

of T. Let Inv(A) be the group of invertible operators in 38(X). The set of

all Fredholm operators on X is denoted <D(A"), and O (X) is the set of all

reO(X) with index zero. The notation nul(T), def(T),and ind(T) is clear

(the nullity, defect, and index of T). As in the Introduction,

0)(T) = {kGC:k-T £ <D(A)},     and      W(T) = {k G C: k - T $ <D°(A)} .

Also, let a'(T) = {k G a(T): k ¿ 0}, and w'(T) and W'(T) are defined

similarly.

Now we state the main result of the paper.

Theorem 4. Assume T G 38(Y)  and T has an extension  T G 38(X)  with

7(A) ç Y.
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(1) a'(T) = cr'(:n, (o'(T) = co'(T), and W'(T) = W'(T). If k £ co(T),

k ¿ 0, then ind(A - T) = ind(A - T).
(2) When Y is a proper dense subspace of X, then a(T) = a(T), co(T) —

co(T), and W(T) = W(T).

(3) When Y is closed in X, but Y has no closed complement in X, then

a(T) = ct(7) , co(T) = co(T), and W(T) = W(T).

The proof of part ( 1 ) of the theorem is contained in the next four lemmas.

When T g38(Y) , then T always denotes an extension of T with T g38(X) .

In addition when T G £, then it is assumed that T(X) ç Y.

It is convenient to label two separate cases:

(C) F is a closed subspace of X ; (D) Y is dense in X.

Concerning these cases, we have the following facts:

Note. When (D) holds, then T G £ is equivalent to the property

(#)   37 >0 such that ||7>||v < /HyH^       (y G Y).

When (C) holds, then 3r(Y) ç £. For in this case when F = a®y G 3r(Y),

then by the Hahn-Banach Theorem a has an extension a G X'. Then F —

ä®yG38(X), 7(A) ç T,and F(z) = F(z) for all zgY .

Lemma 5. Assume R and T are in £ and k G C, k^O.

(1) k-R Glnv(Y) o k-R Glnv(X).

(2) Assuming (C) holds, if k - T g <&°(Y), then A - 7 G <D°(A).

Proof. Assume that R G £ and that k ¿ 0. If (k-R)x = 0, then kx = R(x) G

Y. This proves that ¿V(k -R)= JY(k - R). Assume k - R G Inv(T), and fix

zgX . Since R(z)gY , 3yGY such that (k - R)y = R(z). Therefore

(k - R)(z +y) = kz- R(z) + (k- R)y = kz.

This proves 31 (k - R) = X, and since yT(k -R)= ¿V(k - R) = {0}, k - R G
Inv(A).

Assume k-R G InvÇA). Fix y G Y. Then 3x G A with (k - R)x = y.

Since R(x) G Y, kx = Rx + y G Y ,so xgY . This proves 3î(k - R) = Y, so

k-Relm(Y).

Now suppose (C) holds and k - T G <î> (Y). By [1, Theorem 0.2.8] we can

write k - T = S + F where S G lm(Y) and F g 3r(Y). As noted above,

since (C) holds, F G £ and F has an extension F G S?(X). By part (1)

k-T-FG Inv(A), and this proves k - 7 g <D°(A).

Lemma 6. Let T G £.  Assume k G C, k ^ 0, and k

k - T G O(r) and ind(A - 7) < ind(A - T).

Proof. Just as in Lemma 5, we have ¿V(k-T) — jV(k-T)

nul(A - 7).

T G O(A).   Then

Thus, nul(A-T) =



EXTENSIONS OF BOUNDED LINEAR OPERATORS 945

Now assume {yl,... ,yn} is a linearly independent set in Y with

sp<m{yi,...,yn}n3?(k-T) = {0}.

Suppose for some x g X and {A, , ... ,kn} c C, we have

k{yl+--- + knyn = (k-T)x.

Then kx - k{yx +-1- knyn + Tx G Y. But this implies (A - T)x = 0. Thus,

31 (k - T) has codimension at least n . It follows that 31 (k - T) must have

finite codimension in Y. By [5, Cor. (3.2.5)] 31 (k - T) must be closed, hence

A - T G <b(Y). Also the argument shows def(A - T) < def(A - 7). Thus,

ind(A - 7) < ind(A - T).

Lemma 7. Assume (C) holds. Suppose TgS,, AgC, A^O, and k-TG<S>(Y).

Then A - 7 G <D(A) and ind(A - T) = ind(A - 7).

Proof. We may assume A = 1 . Since / - T G 4>(7), 3S G 38(Y) and 3F ,

G g F (Y) suchthat

(I-T)(I-S) = I-F    and     (I - S)(I - T) = I - G.

Because (C) holds, G G 3r(Y) C £. Then S = G-T + STgS. We

have (/ - T)(I - S) G <D°(T) and S, T G £, so Lemma 5 (2) applies. Thus,

(/ -J)(I -S)G O0(A). Similarly, (/ - S)(I - 7) G <t>°(X). This proves that
I-Tg <D(A) and ind(7 - T) = - ind(7 - S). By Lemma 6

ind(7 - 7) < ind(7 -T) -» - ind(7 - S) < - ind(7 - S) = ind(7 - 7).

Lemma 8._Assume (D) holds. Suppose TgS,, ^ G C, A / 0. // A - 7" e <D( V),

íAtn A - 7 G <D(A) a«i7 ind(A - T) = ind(A - 7).

Proof. We may assume A = 1. By hypothesis 3S G 38(Y) and 3F, G G S1'(Y)

such that

(I-S)(I-T) = I-F        and (7 - T)(I - S) = I - G.

Let M = JV(F) r\Jr(G), and note that M has finite codimension in Y . Since

S = -T + ST on M it follows from (#) that

3J > 0    with     IIS^IIj, < J[[y[[x       (yGM).

Let Af be the closure of M in A and let S: M —► T be the extension of 5

acting on M. Now M has finite codimension in X, and 51 + T - TS = 0 on

Ä7. Write X = M ® N where N is finite dimensional. Define R G B(X) by

Ä = S on Ä7 and R = 0 on AT. Note that 7?(A) c 7. Since R + T - TR
has finite-dimensional range on X, I - T has right Fredholm inverse 7 - 7?

on X.

Let R be the restriction of R to Y. Then R + T - TR G 3r(Y). A

straightforward computation shows 7?-S G &(Y). It follows that R+T-RT G

&~(Y). Since 7? and T have extensions to operators in 38(X), it follows that

R + T-RT G &(X). Thus, 7 - 7 G <D(A).
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Concerning index, Lemma 6 implies that ind(7 - T) < ind(7 - T). The

reverse inequality follows from [2, Theorem 4.8].

The completion of the proof of Theorem 4. First note that in order to prove part

(1) of the theorem, it suffices to prove it in the two cases, when (C) holds and

when (D) holds. The combination of Lemmas 5, 6, 7, and 8 establishes part

(1) in these two cases. Now we prove part (2), so we assume that (D) holds.

Suppose Y — M ®N where M is a subspace of Y which is closed in X and

N is a finite-dimensional subspace of Y . But then M®N is a closed subspace

of X, a contradiction.

Assume TgS. If T G 0(A), then 3?(T) ç Y and has finite codimension

in Y . It follows that Y — 3?(T) © N where N is finite dimensional. This is

a contradiction by the argument above. This proves T £ 4>(A), so

0 G œ(T) ç W(T) ç a(T).

Now suppose T G Q>(Y). Then 3S G B(Y) and 3F g 3r(Y) with I - F =

ST g S. Let M = yV(F). By (#) it follows that M is closed in A. But M

has finite codimension in Y , so again we have a contradiction. Thus

Ogco(T)C W(T) Cct(T).

Now consider the case where Y is closed in A, but Y has no closed

complement in X. Certainly T $ ®(X), since otherwise, the assumption

3?(T) ç Y implies that Y has finite codimension in A, a contradiction. Sup-

pose TgQ>(Y). Then 3S_g38_(Y) andJ~G^(Y) suchthat ST - F is the
identity on Y. Set P - ST - F . Then P is a bounded projection of A onto

Y . Again, this is a contradiction. Thus, 0 g m(T) and 0 G co(T), so equality

holds between the sets as indicated in (3).

Concerning Theorem 4, note that it is always true that 0 G o(T), since

3?(T) ç Y ± X. However, o(T) need not contain 0. For example, assume

that Y and Z are proper closed subspaces of A with A = Y © Z. Let P

be the projection of X on Y which is zero on Z. Then o(P) = {0,1}. But

the operator P = P\Y is the identity operator on Y, so o(P) = {1}. Also,

assuming that neither Y nor Z is finite dimensional, we have (o(P) = W(P) =

{0,1}, and (o(P) = W(P) = {1}.

We give one example where Theorem 4 applies (other applications are given

in the next section).

Example 9. Let Q be a locally compact Hausdorff space which is a -compact,

and let p be a positive Borel measure on Q. Assume that K(x ,t) is a kernel

defined on Q x Q with the property

( f )     x —> K(x , t) is a continuous and bounded map of ÇI into L (Çl,p).

When K(x ,t) is the kernel of a locally continuous and locally compact oper-

ator T on C(Q), then K satisfies (f) ; this is the key condition 12.7(a) in
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[10, Theorem 12.2, p. 303]. It is easy to see that

T^ijlix) = f K(x, t)f(t) dp(t)       (f G L°°)
Re-

defines an operator in 38(L°°(Çl,//)) with the property that T^L00) ç C(Q).

Then Theorem 4 implies that the spectral and Fredholm properties of T in

C(Q) and the spectral theory of 7^ in L°° are the same. This is essentially

the content of [10, Theorem 12.7, p. 321].

3. Applications to operators on Lebesgue spaces

Let (£l,p) be a measure space with p. a positive rj-finite measure on Q.

Assume T is a linear map defined on the space of integrable simple functions on

Ci with values in the measurable functions on Q, and suppose T has a bounded

extension Tr on Lr(Q) for all r in the interval [p ,s] (here 1 <p < s < <x>).

When p(£l) is finite, then it is well known that

(*) a(Tr)Qcj(Tp)Ua(Ts)        for r G [p,s].

In the general case, only the less precise inclusion holds that

<r(Tr)ç[<T(Tp)Ua(Ts)f        for r g [p ,s]

where Ê denotes the polynomial convex hull of the set E ; see [2, Theorem 5.3].

For example, when Q = [0 , oo) and p. is Lebesgue measure, let T be defined

by the formula

T(f)(x) = x~' f" f(t)dt,       x>0.
Jo

Then T has a bounded extension T on Lp([0,oo)) for 1 < p < oo, and

it is known that when  1 < p < oo, then o(T) is the circle with center and

radius (2(1 -p~ ))~ [4]. The inclusion indicated in (*) does not hold in this

example.

Now we apply the results of §2 to prove that in some cases (*) can be pre-

served. Let Lrc> be the space Lr'°° = Lr(£1, p.) (~) L°°(Q , p) with the com-

plete norm max(||/||r, [[fW^). Fix 1 < p < s < oo. For r,t G [p ,s] with

r < t we have Lr '°° ç l! '°° . Assume that T is a linear map with extensions

Tr ^ G 38(Lr'°°) for r G [p ,s]. The key fact used to establish (*) when Q

has finite measure is that in this case when 1 < r < t < oo, then L1 ç Lr.

Using the fact that there is a similar ordering of the spaces Lr '°° , the same

analysis as in the finite measure case [2, §4] proves that when p < r < s :

(i) ^Troo)Ça(Tpoo)^a(Tsoo);

(n)   W(TrJÇW(TpJuW(Ts^);
(iii) w(TrJ c œ(Tpoo)Uœ(TStJuœ0 where a>0 = {A i  a>(Tp<JU

c(rjoo):ind(A-rpoo)^ind(A-7;oo)}.
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Theorem 10. Assume a linear operator T has bounded extensions T G 38(if)

and Ts G 38 (Ls) where l<p<s<oo.In addition assume T(lf) ç L°° and

TS(LS) C L°° . Then forp <r<s:

(1) a(Tr)Ccj(Tp)Ua(Ts);

(2) W(Tr)CW(Tp)öW(Ts);
(3) co(Tr) ç œ(Tp) U œ(Ts) U co0   where co0 = {A   £   œ(Tp) U œ(Ts):

ind(A - Tp) ¿ ind(A - Ts)}.

Furthermore, if p < r < t < s and A - Tk G<&(Lk) for k = r and k - t, then

ind(A - Tr) < ind(A - Tt).

Proof. By the Riesz Convexity Theorem [6, Theorem 11, p. 525] it follows

that when r G [p ,s], then Tr g 38(Lr), and also that Tr(Lr) ç L°° . The

restriction operators Tr ^ satisfy properties (i), (ii), and (iii) listed just prior

to the theorem. By applying Theorem 4, we have that the spectral and Fredholm

properties of Tr and Tr x are exactly the same. This proves (l)-(3).

Assume p < r < t < s and A — Tk € 0(L ) for k — r and k - t.

By Theorem 4, A - Tk TC G <b(Lk '°°) for k = r and A: = ?. Then [2, Theo-

rem 4.8] implies that ind(A- Tr ) < ind(A- Tt oo). Therefore Theorem 4 gives

ind(A -Tr)< ind(A - Tt).

The situation described in the hypotheses of Theorem 10 is quite common.

We give one example. Let G be unimodular locally compact group with a

fixed Haar measure. We write the group operation on G as multiplication.

Let k G L (G) n L (G), and assume tp and tp are in L°°(G). Let T be the

integral operator determined by the kernel tp(x)k(xC )y/(t). Using [8, (20.19)

(iii), (iv)], it follows that T2(L2) ç L°° and T^L00) ç L°° , so TS(LS) ç L°°

for 2 < s < oo . Thus, Theorem 10 applies to Tr with r in any interval [2 , s],

s < oo.

Other spaces can serve in the role played by L°° above. For example, assume

^(i)GL°°([0,oo)) and x<p(x) G L°° nL2([0 ,oo)). Define T by

T(f)(x) = <p(x) T <p(t)f(t)dt = (x<p(x))x-1 T v(t)f(t)dt,       x>0.
Jo Jo

Then T2 g 38(L2), 7^(7°°) ç Û . Therefore for 2 < r < oo, Tr(Lr) ç L2.

The spaces L 'r = L2C\Lr are ordered by L2 '' ç L2 'r when 2 < r < í < oo .The
1   r

same type of analysis used above applied to the operators T2 r G 38(L ' ) and

their extensions Tr G 38(Lr), leads to a result similar to Theorem 10. In

particular, when 2<p<r<5<oo,

<j(Tr)C<j(Tp)Ua(Ts).
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