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(Communicated by Thomas H. Brylawski)

Abstract. Let Ax = b be an mxn system of linear equations with rank m

and integer coefficients. Denote by Y the maximum of the absolute values of

the m x m minors of the augmented matrix (A, b). It is proved that if the

system has an integral solution, then it has an integral solution x = (x,) with

max |jc,| < Y . The bound is sharp.

I. Introduction

The existence of small integral solutions to systems of linear equations with

integral coefficients has been discussed previously in [1, 2,3,4,5,6,7,8, 11]. Two

types of problems have been considered.

In the first type the system is assumed to have a nonzero integer solution

and the existence of a small solution is proved. A typical result of this type is

the classical Siegel's Lemma [7] for homogeneous systems which has been used

extensively in the theory of transcendental numbers. This result was general-

ized in [ 1 ] where the existence of a small integral basis for systems of linear

homogeneous equations is proved.

In the second type of problems the system is assumed to have a nontrivial

nonnegative integral solution and the existence of a small solution with these

properties is proved. More work has been devoted recently to this type because

of its implications for the complexity of integer programming [11]. In [3] the

conjecture was made that for the second type of problems a nonnegative integral

solutions exists with components bounded by the pxp minors of the augmented

matrix, where p is the rank of the matrix. This conjecture was proved in

several special cases and weaker results were proved in the general case in [4,

5]; however, it is still open in the general case.

In [6] the corresponding conjecture for the first type problem is discussed

and proved under various additional conditions. In particular it is proved for
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an m x « system of rank m when n - m < 8 . The object of this paper is to

prove this latter conjecture, namely:

If Ax — b is an mxn system of linear equations of rank m with integer

coefficients and if the system has a nonzero integer solution, then it has an

integral solution x — (x¡) with 0 < max|.x;| < Y, where Y is the maximum

of the absolute values of the mxm minors of (A ,b).

This bound is sharp as we can see in the case A = (A1 \ 0) and A1 is a

unimodular matrix, or if (1) A is an mx(m + l) matrix with the property that

the gcd of all the mxm minors of A is 1, and (2) b = 0. Such an A can be

obtained, for example, by taking m rows of an (m + 1) x (m + 1) unimodular

matrix.

2. The main result

Let Ax = b be a matrix equation of the form

(1)

'in

*ml -Xn

M ,«+i

<-ûm,n+l

where each ati is an integer. Assume that n > m, that the rows of A are

linearly independent, and that (1) has a solution y = (y¡), where each y, is an

integer.

The main result of this paper is the following:

Theorem. If Ax = b has a solution in integers, it has such a solution within the

bound Y.

Proof. Since A has full row rank, we may assume, without loss of generality,

that the first m columns of A are linearly independent. Accordingly, partition

A as (B ,N), where B is m x m and nonsingular, and A' is m x (n - m).

Similarly, partition x as (xB ,x^)T, where xTB = (xx ,x2, ... ,xm) and xj, =

(xm+x , ... ,xn). Let ô be the determinant of B .

The system ( 1 ) can be expanded as

(2) BxB + NxN = b

and the general solution to (2) in real numbers is given by

(3) xB = B    (b - NxN),       xN arbitrary.

From (3), it follows that finding integer solutions to (1) is equivalent to

finding integer solutions xN to
/v

(4) B    b = B    NxN(modl).

Since ( 1 ) is assumed to have a solution in integers, it follows that (4) also has

a solution. Gomory [10] has shown that if (4) has an integer solution, then it

has a nonnegative integer solution with

(5) Xm+\ + Xm+2 + + *< |*|-1.
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(See also Theorem 5 on p. 275 of [9].)

Let xN be such a solution to (4), and substitute xN into (3) to compute xB .

Then x — (xB ,xN) is an integer solution to (1). The proof will be completed

when we demonstrate that each component of x has absolute value at most Y.

For / = m + 1 , m + 2... , n it follows immediately from (5) that \x¡\ < Y.

For i = 1,2,... ,m and j = I ,2, ... ,n - m let <5. be the determinant of

the matrix obtained by replacing the / th column of B with the j th column

if N (i.e., by the (j + m) th column of A ), and let r5(0 be the determinant of

the matrix obtained by replacing the i th column of B with b . It now follows

from Cramer's rule and (3) that

l*/l = fto - SilXm+l - Si2Xm+2-ôi,n-mXM\Ô\

< (ftol + ft, \*m+l + \Sní*m+2 + ■ ■ ■ + ft ,„-J*„)/I¿l
<Y(l+xm+x+xm+2 + --- + xn)/\ô\

<y(l + (|¿|-l))/|¿|    (by(5))

<Y.

Hence all components of x are bounded in absolute value by Y, completing

the proof of the theorem.
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