FIXED POINTS OF AUTOMORPHISMS OF COMPACT RIEMANN SURFACES AND HIGHER-ORDER WEIERSTRASS POINTS

RYUTARO HORIUCHI AND TOMIHIKO TANIMOTO

(Communicated by Irwin Kra)

Dedicated to Professor Kôtaro Oikawa for his 60th birthday

ABSTRACT. A sufficient condition for fixed points of an automorphism of prime order on a compact Riemann surface to be higher-order Weierstrass points is given. This leads us to a complete study of the cases where the prime orders are small.

1. Let M be a compact Riemann surface of genus $g \ge 2$. We denote Aut M the group of conformal automorphisms of M, $\nu(T)$ the number of fixed points of an automorphism $T \in \operatorname{Aut} M$ and $H^q(M)$ the space of holomorphic q-differentials on M.

Lewittes proved that if $\nu(T) \ge 5$, then every fixed point is a 1-Weierstrass point [5], and in this relation, some cases have been studied by Accola [1], Duma [2], Farkas and Kra [3] for higher-order Weierstrass points (see Corollaries 1, 2, 3, 4 below). Guerrero [4] proved that if $\nu(T) = 1$ and the fixed point is not a 1-Weierstrass point, then T has order 6, $g \equiv 1 \mod 6$ and the fixed point is a q-Weierstrass point for all $q \ge 2$. It is known that if the order of T is prime, then $\nu(T) \ge 2$ [3]. Guerrero also gave examples of Riemann surfaces with automorphisms of prime order whose two fixed points are not q-Weierstrass points for $q \ge 2$.

The purpose of this paper is to give a sufficient condition for fixed points to be q-Weierstrass points $(q \ge 2)$ and to supplement the results mentioned above. We will show that if $\nu(T)(2s+1-n) \ne 2(n\delta-r)$, then the fixed points of T are q-Weierstrass points, and study the case where $\nu(T) \ge 3$ and the order of T is 5.

2. For $T \in \operatorname{Aut} M$, let ε be the rotation constant of T at a fixed point of T, i.e. locally $T^{-1}: z \to \varepsilon z$. There is a basis for the space of holomorphic q-differentials such that the linear map induced by T on this space is given by the matrix diag($\varepsilon^{\gamma_1-1+q}, \varepsilon^{\gamma_2-2+q}, \ldots, \varepsilon^{\gamma_d-1+q}$) for each $q \ge 2$, where d = (2q-1)(g-1), and $1 = \gamma_1 < \gamma_2 < \cdots < \gamma_d < 2q(g-1) + 2$ is the q-gap

©1989 American Mathematical Society 0002-9939/89 \$1.00 + \$.25 per page

Received by the editors June 27, 1988 and, in revised form, August 29, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 14F07; Secondary 30F10.

sequence at the fixed point. If there exists such a γ_j with $\gamma_j > j$ for at least one j in the q-gap sequence at a point, then the point is called a q-Weierstrass point. So, for a fixed point which is not a q-Weierstrass point, we have the matrix

diag(
$$\varepsilon^q$$
, ε^{q+1} , ..., ε^{d-1+q}).

The multiplicity of the eigenvalue 1 is equal to dim $H^q_{\langle T \rangle}(M)$ (for more details, see Farkas and Kra [3]).

3. Now we give a sufficient condition for fixed points to be q-Weierstrass point $(q \ge 2)$.

Theorem 1. Assume that for $T \in \operatorname{Aut} M$ of prime order n, there is a fixed point of T which is not a q-Weierstrass point for some $q \ge 2$. Let q - 1 = kn + s $(0 \le s \le n - 1), g - 1 = mn + t \quad (0 \le t \le n - 1), (2q - 1)(g - 1) = [(2q - 1)(g - 1)/n]n + r \quad (0 \le r \le n - 1) \text{ and } \delta = [(r + s)/n]$. Then we have

(1)
$$\nu(T)(2s - (n - 1)) = 2(n\delta - r).$$

Proof. The representation of T on $H^{q}(M)$ is

$$\operatorname{diag}(\varepsilon^q,\ldots,\varepsilon^{(2q-1)(g-1)+q-1})$$

where $\varepsilon = e^{2\pi i/n}$, and the multiplicity of the eigenvalue 1 is

$$\left[\frac{(2q-1)(g-1)+q-1}{n}\right] - \left[\frac{q-1}{n}\right]$$

and is also equal to dim $H^q_{\langle T \rangle}(M)$.

We set

$$\delta' = \left(\left[\frac{(2q-1)(g-1)+q-1}{n} \right] - \left[\frac{q-1}{n} \right] \right) - \left[\frac{(2q-1)(g-1)}{n} \right] \\ = \left[\frac{(2s+1)t+s}{n} \right] - \left[\frac{(2s+1)t}{n} \right].$$

Now we have

(2)
$$(2q-1)(g-1) = \left[\frac{(2q-1)(g-1)}{n}\right]n+r$$
 $(0 \le r \le n-1),$

and

$$(2q-1)(g-1) \equiv (2s+1)t \equiv r \pmod{n}.$$

If we write (2s+1)t = pn + r, then

$$\delta' = \left[\frac{pn+r+s}{n}\right] - \left[\frac{pn+r}{n}\right] = \left[\frac{r+s}{n}\right],$$

and thus we have $\delta = \delta' = 0$ or 1.

Substituting the relation

$$\left[\frac{(2q-1)(g-1)}{n}\right] = \dim H^q_{\langle T \rangle}(M) - \delta$$

= $(2q-1)(\tilde{g}-1) + \nu(T)[q(1-1/n)] - \delta$,

where \tilde{g} is the genus of the Riemann surface $M/\langle T \rangle$ and the Riemann-Hurwitz formula

$$g-1 = n(g-1) + \frac{1}{2}\nu(T)(n-1)$$

into the relation (2), we get

$$\nu(T)(2s - (n - 1)) = 2(n\delta - r).$$

4. In the case n = 2, under the same hypothesis as in the above theorem, we have $\nu = 2$, which means that the genus $g \equiv 0 \mod n$ as is seen from the Riemann-Hurwitz relation. In the case $\nu = 2$, it was shown by Guerrero [4] that there exists an automorphism of prime order n on a Riemann surface of genus n whose two fixed points are not q-Weierstrass points $(q \ge 2)$.

Corollary 1 (Duma [2]). Let $T \in \operatorname{Aut} M$ be of order 2. If $\nu(T) \ge 3$, then every fixed point is a q-Weierstrass point $(q \ge 2)$.

Corollary 2 (Farkas and Kra [3]). Let $T \in Aut M$ be of prime order n. If $\nu(T) \ge 3$, then every fixed point of T is a q-Weierstrass point for $q \ge 2$, $q \equiv 1 \pmod{n}$.

Proof. If we set s = 0 in Theorem 1, then $\delta = [(r+s)/n] = 0$ so that $\nu(T) = 2r/(n-1) \le 2$. This contradiction proves that the fixed points are q-Weierstrass points with $q \equiv 1 \mod n$.

Corollary 3 (Accola [1]). Let $T \in Aut M$ be of prime order n. If $\nu(T) \ge 3$, then every fixed point of T is an n-Weierstrass point.

Proof. If we set s = n - 1 in the above theorem, then

$$\nu(T) = 2(n\delta - r)/(n-1) \le 2.$$

This cotradiction shows that fixed points are q-Weierstrass points with $q \equiv 0 \mod n$.

5. Now we can improve Corollary 2 and Corollary 3 to some extent:

Theorem 2. Let $T \in \operatorname{Aut} M$ be of prime order $n \ge 3$. If $\nu(T) \ge 3$, then every fixed point of T is a q-Weierstrass point for $q \ge 2$, $q-1 \equiv s \pmod{n}$, where s satisfies the inequalities

$$\frac{\nu}{2(\nu-1)}(n-1) < s \qquad or \qquad s < \frac{\nu-2}{2(\nu-1)}(n-1).$$

Proof. If $\delta = 0$ in (1), then we have $\nu(T)(n-1-2s) = 2r \ge 0$ and $\nu(T)(n-1) - 2(\nu(T)-1)s = 2(r+s) \le 2(n-1)$ so that

$$\frac{\nu(T)-2}{2(\nu(T)-1)}(n-1) \le s \le \frac{n-1}{2}.$$

If $\delta = 1$ in (1), then we have

$$\nu(T)(2s - (n - 1)) = 2(n - r) > 0$$

and

$$2(\nu(T) - 1)s - \nu(T)(n - 1) = 2(n - (r + s)) \le 0$$

so that

$$\frac{n}{2} \le s \le \frac{\nu(T)}{2(\nu(T)-1)}(n-1).$$

Since $(\nu(T) - 2)/2(\nu(T) - 1) \le 1/2$ and $\frac{1}{2} \le \nu(T)/2(\nu(T) - 1)$, the theorem is now proven.

From this theorem, we can obtain the following:

Corollary 4 (Duma [2]). Let $T \in \text{Aut } M$ be of order 3. If $\nu(T) \ge 3$, then every fixed point is a q-Weierstrass point $(q \ge 2)$ except for $q \equiv 2 \pmod{3}$.

The remaining case $q \equiv 2 \mod 3$ will be settled, following Guerrero's example [4].

The hyperelliptic Riemann surface defined by the equation

$$w^{2} = (1 + z^{3} + z^{6} + z^{9}),$$

has genus g = 4, and has an automorphism with three fixed points, two of which over z = 0 can be shown to be non-5-Weierstrass points.

6. As for the case n = 5, the cases s = 0 and s = 4 are settled by Theorem 2. In the case s = 2, there exists a hyperelliptic Riemann surface of genus 5 with an automorphism of order 5 whose two fixed points are not q-Weierstrass

points $(q \equiv 3 \mod 5)$ (Guerrero [4]). In the case s = 1, assume that a fixed point of T is not a q-Weierstrass point, then we have $\nu(T) = r = 3$, provided that $\nu(T) \ge 3$.

In the case s = 3, we have $\nu(T) = 3$, r = 2 under the same assumptions as in the case s = 1.

We can show that the hyperelliptic Riemann surface defined by the equation

$$w^2 = 1 + z^5$$

is of genus two and has three fixed points, two of which over z = 0 are not q-Weierstrass points for q = 4, 7.

Thus we have the next corollary.

Corollary 5. Let $T \in \text{Aut } M$ be of order 5. If $\nu(T) \ge 3$, then every fixed point is a q-Weierstrass point $(q \ge 2)$, except for the following cases:

(1)
$$q \equiv 2 \mod 5$$
 and $\nu(T) = r = 3$,

(2)
$$q \equiv 3 \mod 5$$

(3) $q \equiv 4 \mod 5$ and $\nu(T) = 3$, r = 2.

References

- 1. R. D. M. Accola, On generalized Weierstrass points on Riemann surfaces, Modular functions in analysis and number theory, 1-19, Lecture Notes Mathematics Statistics, 5, University of Pittsburgh, Pittsburgh, PA, 1983.
- 2. A. Duma, Holomorphe Differentiale höherer Ordnung auf kompakten Riemannschen Flächen, Schriftenreihe der Univ. Münster, 2, Serie, Heft 14, 1978.

- 3. H. M. Farkas and I. Kra, *Riemann surfaces, Graduate texts in Math.* 71, Springer-Verlag, New York, 1980.
- 4. I. Guerrero, Automorphisms of compact Riemann surfaces and Weierstrass points, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference, Princeton University Press, Princeton, NJ, 1980.
- 5. J. Lewittes, Automorphisms of compact Riemann surfaces, Amer. J. Math. 85 (1963), 732-752.

Department of Mathematics, Kyoto Sangyo University, Kamigamo Kitaku Kyoto 603, Japan