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Abstract. A sufficient condition for fixed points of an automorphism of prime

order on a compact Riemann surface to be higher-order Weierstrass points is

given. This leads us to a complete study of the cases where the prime orders

are small.

1. Let M be a compact Riemann surface of genus g > 2. We denote AutM

the group of conformai automorphisms of M, v(T) the number of fixed

points of an automorphism TeAutM and Hq(M) the space of holomorphic

^-differentials on M.

Lewittes proved that if v(T) > 5, then every fixed point is a 1-Weierstrass

point [5], and in this relation, some cases have been studied by Accola [1], Duma

[2], Farkas and Kra [3] for higher-order Weierstrass points (see Corollaries 1, 2,

3, 4 below). Guerrero [4] proved that if v(T) = 1 and the fixed point is not a

1-Weierstrass point, then T has order 6, g = 1 mod 6 and the fixed point is a

g-Weierstrass point for all q > 2 . It is known that if the order of T is prime,

then v(T) > 2 [3]. Guerrero also gave examples of Riemann surfaces with

automorphisms of prime order whose two fixed points are not ^-Weierstrass

points for q > 2.

The purpose of this paper is to give a sufficient condition for fixed points

to be <7-Weierstrass points (q > 2) and to supplement the results mentioned

above. We will show that if v(T)(2s + 1 - «) ^ 2(nô - r), then the fixed points

of T are q-Weierstrass points, and study the case where v(T) > 3 and the

order of T is 5 .

2. For T e AutM, let e be the rotation constant of T at a fixed point of

T, i.e. locally T~ : z —► ez. There is a basis for the space of holomorphic

^-differentials such that the linear map induced by T on this space is given

by the matrix diag(ey,~[+q ,eY2~2+q , ... ,Eyd~^q) for each q > 2, where d =

(2q - l)(g - 1), and  1 = yx < y2 < ■ ■ ■ < yd < 2q(g - 1) + 2 is the <7-gap
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sequence at the fixed point. If there exists such a y with y. > j for at least

one j in the #-gap sequence at a point, then the point is called a ^--Weierstrass

point. So, for a fixed point which is not a ^-Weierstrass point, we have the

matrix

diag(e\e9+1 ,ed-l+q).

The multiplicity of the eigenvalue 1 is equal to dim 7/L. (M) (for more details,

see Farkas and Kra [3]).

3. Now we give a sufficient condition for fixed points to be ^-Weierstrass point

(Q > 2).

Theorem 1. Assume that for T e AutM of prime order n, there is a fixed point

of T which is not a q-Weierstrass point for some q > 2. Let q - 1 = kn + s

(0 < 5 < « - 1),   g - 1 = m« + t   (0 < t < n - 1),   (2q - l)(g - 1) =

[(2q -l)(g- l)/n]n + r  (0 < r < « - 1 ) and ô = [(r + s)/n]. Then we have

(1) i/(r)(2s-(«-l)) = 2(«r5-r).

Proof. The representation of T on Hq(M) is

diag(e? ,...,£

2ni/n
where e = e       , and the multiplicity of the eigenvalue 1 is

(2q-l)(g-l) + q-l 1

and is also equal to dim H?T, (M).

We set

■(2q-l)(g-l) + q-l
'-(

q-l

y

(2q-l)(g-l\

(2s + l)t + s (2s+l)t

«

Now we have

(2) (2q-l)(g-l\

and

(2q-l)(g-l)
n + r       (0<r<«-l),

(2q - l)(g - I) = (2s + l)t = r

If we write (2s + l)t = pn + r, then

ô' =
pn + r + s

n

pn + r

n

(mod «).

r + s

and thus we have S = ô' = 0 or 1.

Substituting the relation

■(2q-l)(g-l)
= dim Hq(M)-S

= (2q-l)(g-l) + v(T)[q(l-l/n)]-ô,
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where g is the genus of the Riemann surface M/(T) and the Riemann-Hurwitz

formula

g-l=n(g-l) + 2-v(T)(n-l)

into the relation (2), we get

v(T)(2s-(n-l)) = 2(nô-r).

4. In the case « = 2, under the same hypothesis as in the above theorem, we

have v = 2, which means that the genus g = 0 mod « as is seen from the

Riemann-Hurwitz relation. In the case u = 2, it was shown by Guerrero [4]

that there exists an automorphism of prime order « on a Riemann surface of

genus « whose two fixed points are not g-Weierstrass points (q > 2).

Corollary 1 (Duma [2]). Let T e AutM be of order 2. If v(T) > 3, then
every fixed point is a q-Weierstrass point (q > 2).

Corollary 2 ( Farkas and Kra [3]). Let T e AutM be of prime order n.   If

v(T) > 3, then every fixed point of T is a q-Weierstrass point for q > 2, q =. 1

(mod «).

Proof. If we set s — 0 in Theorem 1, then ô = [(r + s)/n] — 0 so that v(T) =

2r/(n-l) < 2. This contradiction proves that the fixed points are ^-Weierstrass

points with q = 1 mod n .

Corollary 3 (Accola [1]). Let T e AutM be of prime order « . If u(T) > 3,

then every fixed point of T is an n-Weierstrass point.

Proof. If we set s = « - 1 in the above theorem, then

i/(r) = 2(/ii-r)/(n-l)<2.

This cotradiction shows that fixed points are ^-Weierstrass points with q =

0 mod «.

5. Now we can improve Corollary 2 and Corollary 3 to some extent:

Theorem 2. Let T e Aut M be of prime order n > 3. If v(T)>3, then every

fixed point of T is a q-Weierstrass point for q > 2, q - 1 = s (mod «), where

s satisfies the inequalities

2^T)("-1)<i      or      S<W^)^-^-

Proof. If ô = 0  in  (1), then we have  v(T)(n - 1 - 2s) = 2r > 0 and

v(T)(n- l)-2(v(T)- l)s = 2(r + s) < 2(n - 1) so that

u(T)-2   ,       „ «-1

If S = 1 in ( 1 ), then we have

u(T)(2s-(n- l)) = 2(«-r)>0
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and

2(1/(7) - l)s - v(T)(n - 1) = 2(« - (r + s)) < 0

so that

Since (v(T) - 2)/2(v(T) - 1) < 1/2 and \ < v(T)/2(u(T) - 1), the theorem
is now proven.

From this theorem, we can obtain the following:

Corollary 4 (Duma [2]). Let T e AutM be of order 3.  If v(T) > 3, then

every fixed point is a q-Weierstrass point (q > 2) except for q = 2 (mod 3).

The remaining case q = 2 mod 3 will be settled, following Guerrero's exam-

ple [4].

The hyperelliptic Riemann surface defined by the equation

2       /,   ,     3   ,     6   ,     9,W    = (1 + Z    + Z    + Z  ) ,

has genus g = 4, and has an automorphism with three fixed points, two of

which over z = 0 can be shown to be non-5-Weierstrass points.

6. As for the case « = 5, the cases 5 = 0 and 5 = 4 are settled by Theorem 2.

In the case 5 = 2, there exists a hyperelliptic Riemann surface of genus 5

with an automorphism of order 5 whose two fixed points are not «jf-Weierstrass

points (q = 3 mod 5) (Guerrero [4]).

In the case 5=1, assume that a fixed point of T is not a ^-Weierstrass

point, then we have v(T) — r — 3, provided that u(T)>3.

In the case s = 3, we have v(T) = 3, r — 2 under the same assumptions as

in the case 5 = 1.

We can show that the hyperelliptic Riemann surface defined by the equation

2        ,   ,      5
W    = 1 + Z

is of genus two and has three fixed points, two of which over z = 0 are not

^-Weierstrass points for q = 4, 1.

Thus we have the next corollary.

Corollary 5. Let T e Aut M be of order 5. If u(T) > 3, then every fixed point

is a q-Weierstrass point (q > 2), except for the following cases:

(1) q = 2 mod 5 and v(T) = r = 3,

(2) q = 3 mod 5

(3) q = 4 mod 5 and v(T) = 3, r = 2.
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