## A REMARK ON RADON-NIKODYM PROPERTIES OF ORDERED HILBERT SPACES

## LOTHAR M. SCHMITT

(Communicated by Paul S. Muhly)

ABSTRACT. We characterize classical  $L^2$ -spaces as well as  $L^2$ -spaces of  $W^*$ -algebras by appropriate Radon-Nikodym principles.

Segal [9] has shown that usual measure theory can be extended reasonably only to measure spaces, whose corresponding  $L^1$ -spaces have the Radon-Nikodym property. The aim of this note is to show that  $L^2$ -spaces obtained via commutative, respectively, noncommutative integration are as well determined as ordered spaces by suitable Radon-Nikodym principles. Order theoretical characterizations of classical  $L^2$ -spaces were obtained by Sz.-Nagy [11] in the separable and Schaefer [5] in the general case. Noncommutative  $L^2$ -spaces were characterized by Connes [2] and Wittstock and the author [8, 6]. Radon-Nikodym properties of these  $L^2$ -spaces were established by Connes [2], Stratila-Zsido [10] and in [7].

Suppose  $\mathscr{H}$  is a Hilbert space, which is ordered by a self-dual cone  $\mathscr{H}^+$ . Let J be the antilinear unitary involution associated with  $\mathscr{H}^+$  by [2, Proposition 4.1]. Furthermore let  $\mathscr{M}_h$  be the ideal center of  $(\mathscr{H}, \mathscr{H}^+)$  in the sense of Wils—see [1, p. 76]—and  $\mathscr{M} = \mathscr{M}_h \oplus i \mathscr{M}_h$ . Bös [1] has shown that  $\mathscr{M}$  is a commutative  $\mathscr{W}^*$ -algebra with involution  $x^* = JxJ$ ,  $x \in \mathscr{M}$ . In particular the cones of operator-positive, respectively, order-positive elements in  $\mathscr{M}$  coincide.

**Definition.**  $(\mathcal{H}, \mathcal{H}^+)$  has the Radon-Nikodym property if for  $\eta$ ,  $\xi \in \mathcal{H}^+$  satisfying  $\eta \leq \xi$  there exists  $x \in \mathcal{M}^+$  such that  $\eta = x\xi$ .

**Proposition 1.**  $(\mathcal{H}, \mathcal{H}^+)$  has the Radon-Nikodym property if and only if  $(\mathcal{H}, \mathcal{H}^+)$  is unitarily equivalent to  $(L^2(X, \mu), L^2(X, \mu)^+)$  for a measure space  $(X, \mu)$  in the sense of Segal [9].

We shall give the proof of Proposition 1 in a moment. If V is a linear space, then we shall write  $V_n = M_n(V)$  for the space of  $n \times n$  matrices with entries in V. Again let  $\mathscr{H}$  be a Hilbert space and suppose that  $\{\mathscr{H}_n^+, n \in \mathbb{N}\}$  is a

Received by the editors October 19, 1987 and, in revised form, August 30, 1988. 1980 Mathematics Subject Classification (1985 Revision). Primary 46L50, 46B30. Supported in part by NSF grant # DMS 8403631 a.4.

family of self-dual cones  $\mathcal{H}_n^+ \subseteq \mathcal{H}_n$  such that  $(\mathcal{H}, \mathcal{H}_n^+)$  is a matrix ordered space. Let  $J_n$  be the involution in  $\mathcal{H}_n$  associated with  $\mathcal{H}_n^+$ . Finally let  $\mathcal{M}$  be the matrix-multiplier algebra of  $(\mathcal{H}, \mathcal{H}_n^+, n \in \mathbb{N})$  in the sense of [8, Definition 2.1].

**Definition.**  $(\mathcal{H}, \mathcal{H}_n^+, n \in \mathbb{N})$  has the matricial Radon-Nikodym property if for  $n \in \mathbb{N}, \xi, \eta \in \mathcal{H}_n^+$  satisfying  $\eta \leq \xi$  there exists  $x \in \mathcal{M}_n^+$  such that  $\eta = xJ_nxJ_n\xi$ .

**Proposition 2.**  $(\mathcal{H}, \mathcal{H}_n^+, n \in \mathbb{N})$  has the matricial Radon-Nikodym property if and only if  $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+, n \in \mathbb{N})$  is a matrix-ordered standard form in the sense of [8, Definition 1.4].

Proof of Proposition 1. Suppose  $(\mathcal{H},\mathcal{H}^+)$  has the Radon-Nikodym property. Let  $\xi_{\alpha}$ ,  $\eta_{\alpha} \in \mathcal{H}^+$ ;  $\alpha$ ,  $\beta = 1$ , 2 and  $\xi = \xi_1 + \xi_2 = \eta_1 + \eta_2$ . Then  $\xi_{\alpha} = x_{\alpha}\xi$ ,  $\eta_{\beta} = y_{\beta}\xi$  for  $x_{\alpha}$ ,  $y_{\alpha} \in \mathcal{M}^+$ . Let  $\rho_{\alpha\beta} = x_{\alpha}y_{\beta}\xi$ . Then  $\xi_{\alpha} = \sum_{\beta}\rho_{\alpha\beta}$  and  $\eta_{\beta} = \sum_{\alpha}\rho_{\alpha\beta}$ . Hence  $(\mathcal{H},\mathcal{H}^+)$  has the Riesz decomposition property and therefore satisfies the hypothesis of [6, Corollary 2.6]. There is one and only one way to define a matrix order on  $\mathcal{H}$  with by uniqueness self-dual cones  $\mathcal{H}_n^+ \subseteq \mathcal{H}_n$  such that  $\mathcal{H}_1^+ = \mathcal{H}^+$ .  $(\mathcal{H},\mathcal{H}_n^+)$ ,  $n \in \mathbb{N}$ ) satisfies the hypothesis (IV) of [6, Theorem 3.2]. Let  $\mathcal{N}$  be the matrix multiplier algebra of  $(\mathcal{H},\mathcal{H}_n^+)$ . Since the cones  $\mathcal{H}_n^+$  coincide with their transpose

$$\mathcal{H}_n^{+\mathsf{T}} = \{(\xi_{ij}) | (\xi_{ji}) \in \mathcal{H}_n^{+}\}$$

and  $(\mathcal{N}', \mathcal{H}, \mathcal{H}_n^{+T})$  is a matrix ordered standard form we have  $\mathcal{N} = \mathcal{N}'$ . Hence  $\mathcal{N} = \mathcal{M}$  is a commutative  $W^*$ -algebra in standard form. Applying [3, Theorem 2.3] and [4, Proposition 1.18.1] completes the proof.

Note that the above argument can also be used to show that a Hilbert lattice is order isomorphic to an  $L^2$ -space.

Proof of Proposition 2. Suppose  $(\mathcal{H}, \mathcal{H}_n^+, n \in \mathbb{N})$  has the matricial Radon-Nikodym property. Let  $n \in \mathbb{N}$  be fixed,  $\xi, \eta \in \mathbb{H}_n^+$  such that  $\xi \perp \eta$ . Then  $\xi = xJ_nxJ_n(\xi + \eta)$  for some  $x \in \mathcal{M}_n^+$ . Now we have

$$\left\langle \begin{pmatrix} xJ_nxJ_n\eta & x\eta \\ J_nxJ_n\eta & \eta \end{pmatrix}, \quad \eta \otimes \gamma \right\rangle \geq 0 \quad \text{for } \gamma \in \mathscr{M}_2(\mathbb{C})^+.$$

Hence

$$\begin{pmatrix} 0 & \langle x\eta, \eta \rangle \\ \langle J_n x J_n \eta \rangle & \langle \eta, \eta \rangle \end{pmatrix}$$

is a positive matrix and  $\langle x\eta,\eta\rangle=0=\langle p\eta,\eta\rangle$  where  $p=\operatorname{supp}(x)\in\mathcal{M}$  by [8, Theorem 2.2]. Hence we have  $p\eta=J_npJ_n\eta=0$  and  $\xi=p\xi=J_npJ_n\xi$ . Now one can prove [8, Lemma 4.1; Theorem 4.3 (ii)  $\Rightarrow$  (i)] under the above hypothesis. The converse direction in the proof of Proposition 2 is established in [7].

## REFERENCES

- 1. W. Bös, A classification for selfdual cones in Hilbert spaces, Arch. Math. (Basel) 30 (1978), 75-82.
- 2. A. Connes, Charactérisation des éspaces vectoriels ordonnés sans jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121-155.
- 3. U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.
- 4. S. Sakai, C\*-algebras and W\*-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 60, Spinger-Verlag, Berlin, 1971.
- 5. H. H. Schaefer, Banach lattices and positive operators, Grundlehren Math. Wiss., Bd. 215, Springer-Verlag, Berlin, 1974.
- 6. L. M. Schmitt, Characterization of  $L^2(\mathcal{M})$  for injective  $W^*$ -algebras  $\mathcal{M}$ , Math. Scand. 57 (1985), 267–280.
- 7. \_\_\_\_, The Radon-Nikodym theorem for L<sup>p</sup>-spaces of W\*-algebras, Publ. Res. Inst. Math. Sci. 22 (1986), 1025-1034.
- 8. L. M. Schmitt and G. Wittstock, Characterization of matrix ordered standard forms of W\*-algebras, Math. Scand. 51 (1982), 241-260.
- 9. J. E. Segal, Equivalence of measure spaces, Amer. J. Math. 73 (1951), 275-313.
- 10. S. Stratila and L. Zsido, *Lectures on von Neumann algebras*, Abacus Press, Tunbridge Wells, England, 1979.
- 11. B. D. Sz.-Nagy, On the set of positive functions in  $L_2$ , Ann. of Math. II. 39 (1938), 1-13.

Universitaet Osnabrueck, Fachbereich Mathematik/Informatik, D-4500 Osnabrueck, West Germany