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POINTWISE MULTIPLIERS OF WEIGHTED BMO SPACES

STEVEN BLOOM

(Communicated by J. Marshall Ash)

Abstract. An atomic decomposition is obtained for dyadic weighted  H]

spaces with dual weighted dyadic BMO. All multipliers of dyadic weighted

BMO and weighted BMO are characterized.  As an application, the behavior

of "logarithms" of BMO matrices are analyzed for weighted norm inequalities.

1.  BMO MULTIPLIERS

On R, let

9¡t = {intervals of the form [t + k2n , t + (k + 1)2"]: k ,nGZ}

so these are ¿-translations of the dyadic intervals 3lQ . Thus if 7 and J in 3¡t,

either 7 and J are disjoint or one contains the other. The maximal operator

with respect to 3S, is
r t

A/,7(x) = sup{|7(/)| : x G 1,1 G 3t}

where 1(f) = (\/[I\ j f(x)dx . This dyadic maximal operator is related to the

Hardy-Littlewood maximal operator

f(x) = sup 7(1/1).
x€l

On occasion we will restrict x and 7 to [0,2"]. Then we will write this as

f    (x).
A wj-atom is a function supported in an interval 7 with fa = 0 and H^H^ <

l/w(I), where w(I) is the w-measure of 7. Throughout w will be a doubling

measure, that is a non-negative function satisfying the property:

w(J) - / w(x) dx < Cw(I)        whenever 7 c J and |/| < 2|7|.

If w G L (R), we also include the constant atom a = 1 among the lu-atoms.

/ G 77^,  if there exists w-atoms {an} and a sequence {kn} G ll(R) such

that f = ¿ZKan' and

_      ii/L = inf{EiAJ:/=Ev«}-
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We say that / G 77^ t if \\f[\w f = /M*f(x)w(x) dx < œ. A w , i-atom is a

w-atom associated to an interval 7 G 2,.t

Theorem 1.1. / G Hw t if and only if there exist w ,t-atoms an and {kn} G

1\R) with f = E^„«„ • Moreover, thetwonorms \\f\\w>t and inf^^^ £|AJ

are equivalent.

This is quite standard (see, for instance [2]).

A function b G BMOu, , if

sup{^7)/|A-/(è)|:/e^}<0C'

This supremum is denoted by ||6||BMO , and is in fact a norm on BMO^ (

modulo constants. Similarly BMO^ is described by taking this supremum

over arbitrary intervals. Another standard result (see [5])is

Theorem 1.2. The dual space of Hlw ,, (77^ ,)* is BMO„ ,, and {HlJ* =

BMO,,.

We want to characterize functions tp such that ç>(BMOUJ) c BMOUJ. Specif-

ically, let M   be the multiplication operator

M9ñx) = <p(x)f(x).

For what functions tp is M a bounded operator on BMO^ ? In the un-

weighted case on the torus T, Stegenga [7] solved this problem by using

77 ' - BMO duality and Toeplitz theory. It should be easier and more natu-

ral to shift the problem to atoms and use some sort of L check condition like

Theorem 1.1. Admittedly, Theorem 1.1 only applies to the dyadic case, but the

general case follows quite easily from the dyadic one. That's the approach we

take to the weighted problem.

Theorem 1.3. Let w as usual be a doubling measure. Then M^ is bounded on

BMO?(J t if and only if M is bounded on Hw {. Likewise M is bounded on

BMO)() if and only if M   is bounded on 77^ .

Proof. Suppose M   is bounded on BMO   . For / g 77  ,

|A/,L<Csup{||(A//)6 I BMO,,  -  '

= Csup{||/(M/)|:||è||BMa <1

<c\\M9\\.\\f\\w,

so Af   is bounded on 77(¡,. Conversely, if b G BMO/(),

.<C||M?||#IIbmo,,,-
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The argument is identical for 77^ ( and BMOw (.   D

For an interval 7, we let x, denote the center of 7.

Theorem 1.4. Let w be a doubling measure. Then At   is bounded on BMOw ,

if and only if

(a) <p G L°°, and

(b) /, \<p - I(<p)\ < Cw(I)[fxiI îggf F1, for all lG3t.

Proof. We take t = 0. Fix 7 G 3fQ, with left and right halves L and R. Put

a{x) = IHjJT) ^Xr " *^ W "

So a ¡saw, 0-atom. Set

b(x) = w(x) sgn(a<p)(x).

For any interval J ,

1

w(J)

so b G BMOH, C BMO,() 0 and hence,;nc

But atpb - \f\wäf.^jr. so that

w

atpb\ < C.

mlmw-
Since this holds for all dyadic 7, if x is a Lebesgue point, [tp(x)\ < 2C and

so tp G L°° .

For (b), fix I G%. Let g(x) = sgn[ç?(x) - I(tp)] and let a = (l/2w(L))

Is - I(g)]X¡ • So a is a i/j , 0 atom. For x £ I,

M*(ay)(x) = sup{|7(aç>)|: x gJ ,J g20,I c J}

- sup {i7il/H:
1 I   /"        I

^ 71-Í    / a(P\

xgJ,Jg20,IcJ
}

But,

lr = *kr)[il<P8-l,(pI{8)
1

[/
<pg-\l[I(g)l(<p)

2w(I)

1

2^(7) L
18(<P-1(<P))

Ji J
1
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so that

Since Mç(a<p) G L (w), we have

1       í'i ri   m  f       w(x)   i / r

which is (b).

Conversely, let a be a w , 0 atom supported in a dyadic interval 7.  For

Af0*(£zç?)(x) = sup l-rj-AÍ a<p\: xgJ ,J g2>q,I cj\

x,[ \J, '
1

«f?

=i^il/["-'<rtií
¿ro(/)|x-^|/ly-f""1-

so /Jfí/^o(aí')(-x)u,(x)djc < c °y (b).

For x G I,

M*0(a<p)(x) < (a<p)*(x) < [[atp^ < \\<p\[Jw(I),

and

J M¿(ay)w<Moo-

So llalli,,, 0 < C and hence, by Theorem 1.3, (p multiplies BMOUJ 0.   D

One consequence of Theorem 1.4 is that, unless w(x)/([x\ + 1) G L1 , the

only multipliers of BMO)() are the constant functions. For the next result, we

will restrict our attention to such weights.

Theorem 1.5. Let w be a doubling measure, with w(x)/(\x\ + l) G 7_'(R). Then

M   is bounded on BMO)(J if and only if

(a) <p G L°° , and

(b) /, \<p - I(<p)[ < Cw(t)[SxiJ Ç^T1, for all intervals I.

Proof. Suppose (a) and (b) hold. Fix / = [t, t + h] and b G BMO)/;. Then

7 c J = [t ,t + 2"] where 2" < 2h . J G3t, and Theorem 4 gives ||^||BMOn <

^II^IIbmo,, , ^ CH^Ubmo- Butthen,

J— f[<pb- I(tpb)\ < -Ç— f [<pb - I(tpb)[u>(I) Jl w(J) Jj,r

jWb-J(tpb)[2C    f,   ,      ri   ,,,

w(J)

<2C[\<pb[[

so tp multiplies BMO((,.

BMO„, ,
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Conversely, if <p multiplies BMOm , then the identical argument of the first

paragraph of 1.4 shows that q> G L°° . Fix 7 = [-h , h] and put

A»)-/      ̂ VJ\y\>\x\ \y\

Fix J = [a ,a + ô], a>0. Then

r,*     n       n      !   fa+S fa+S w(y) + w(-y)  ,    ,
J(f)-f(a + ô) = -, / y' dydx.

d Ja    Jx y

We estimate k = (l/ô)f£+ f"+ (w(y)/y)dydx. When a > S, a simple esti-

mate shows k < (ô/a)J(w), while if a < ô,

1  f2â f2S w(y) ,    ,       1  /-2<J F w;(y)  ,    ,       1  f20      . n.,   ,k <-¡        /    —^LJ-dydx = -j        /   -^-1dxdy = J       w<CJ(w),
~ à Jo  h     y à Jo  Jo    y â Jo

by doubling. A similar argument applies to any interval, proving that / G

BMOw ( BLO(iJ, in fact). The calculation above also shows that

(1) I(f) = I(w)+f    ^dx.
Jx£I     \X\

Both / and / - 1(f) are in the dual of 77^ . Let g = sgn(<p - I(tp)) and put

a = (l/2w(I))(g-I(g)). So a isa w-atom, and /a<p = (l/2w(I)) f¡ \<p-I(tp)\.

Since ip multiplies H^ ,[$ atpf\ and | f atp(f-I(f))\ are bounded, and so their

difference must be bounded. This difference is

"^¿iT)/1*-'«1'

The boundedness of this, together with (1) and tp G L°° gives (b).   D

Now suppose w(x)l(\ + [x\) & L , as is the case with unweighted BMO. A

weight w G B2 provided

\jf_ f
Hi) Jxi

w(x)dx <c

w(F)Jxii \x-x,[2

for all intervals 7, and w G A if I(w)I(w~[/p~l)p~l < C for all intervals

7, and p > 1 . Let 77 be the Hubert transform, Hf(x) = p.v.fR^dy.

The Hubert transform is bounded on Lp(w) if and only if w G A    [6].   Inp

the unweighted case, 77 can be characterized by all functions for which /

and 77/ G L (R). This characterization extends to weighted 77UJ, so long as

w G A2, and 77/ g Ll(w) for all / G 77?¡, if and only if w G B2 n Ap , for

some p > 1 [2]. We consider such weighted spaces:
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Theorem 1.6. Suppose w G B2f]A , for some 1 < p, and suppose w(x)/(\ +

\x[) & L (R). Then the only multipliers of BMOw are the constants.

,i
Proof. Suppose <p multiplies BMO^, and so also 77^. As before, tp must be

[■!■   il

•1/2

in L°° . Let 7 = [A , A] and let a be a w-atom supported in 7. For x > 1,

H(a(p)(x) = [ '   ^\-[<p(y) - I(?)]dy + I(<p)Ha(x).
7-1/2 x - y

Since tp is bounded, I(tp)Ha G L (w), and so must be

b(x)= f^-[<p(y)-i(<p)}.
J i x - y

In particular, if we take a = sgn[ç? - 7(f?)]^//2u;(7)||ç>||oo , then

il r

b{x) = x2w(I)\\tp\\ooJ!l'/>-I{(p)leLl{w)        «l1,»),

and similarly on (-co , - 1] But that's impossible, unless / \<p - I(<p)\ is zero,

in other words, unless <p is constant a.e. on 7. The same argument applies to

any other interval.   D

Thus far, we have characterized the functions tp for which

II^/IIbmo^^Hbmo,,,-

But there certainly could exist, in theory anyway, multipliers that weren't so

nicely controlled. The closed graph theorem rules out any such multipliers, so

that we have:

Theorem 1.7. Let w be a doubling measure, with w(x)/(\ + \x\) G L . Then

M9\ BMOu, - BMOu, if and only if

(a) tp GL°°, and

(b) /, [tp - I(<p)[ < Cw(I)[fxi¡ ^f J"1, for all intervals I.

Proof. We will norm BMO    with the constants admitted by the norm

11*11 =

to

l^bwx+w^frb-mi

It is easy to see that this is a norm, providing we identify functions that agree

almost everywhere. Now suppose that {fn} is a Cauchy sequence in BMOu),

with this norm. Let Im — [2m , 2m+ ]. Then

/  \fn-L(fn)-fk+L(fk)\<MIJ\\fn-fk\\^0        asn,k^oo.

So {fn - Im(fn)} is a Cauchy sequence in Ll(Im) and has a limit point g G
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Now for / G BMO,,,, put J = 7m_, [J 7m . Then

|/m(/)-/w_,(/)l<^/ 1/ -J(f)\ + zè=ïf    \f-J(f)\
1        Jim 2 .//,„_,

< \j(w)\\f\\

< Cu;(7m)2"m||/|| ,     by doubling.

Soif 7 = [-1 ,1],

|7m(/)-7(/)|<Cw(7m)||/H,

or [Im(f)\ < [Cw(IJ + 1]||/||. In particular, {/„,(/„)} is Cauchy in R and so

converges to a number a. So if / = g + a, f„—>f in L (Im).

In this way, we can find an / such that on each 7m (or -Im or 7 ), fn —► /

in L1 . Now fix an interval 7. Since 7 c [-2m ,2m] for some m , and since

fn - / in L'([-2W ,2m]), /„ - / in l'(7) i and so some subsequence {4}

converges to / a.e. By Fatou's Lemma,

w
^/l/W(/)-/„ + /(/JI^/£minf|(4-/J-7(4-/„ )l

<liminf||/„ -/„||

-0     as     «-00.

So / —► / in BMO   , and thus BMO    is a Banach space, in the norm ||-||.
•* n •* W  7 W ^ nu

Likewise BMO,(J modulo constants is a Banach space in the norm ||-||BM0  .

Now suppose M : BMOw —► BMO(i,. We will apply the closed graph theo-

rem. Assume /n -> / in BMO.((, /const, and M f -» g also in BMOl(J /const.

Restrict attention to the interval [-2m ,2m], and let 7 = [-1 ,1], as above.

Choose representatives of fn for which I(fn) = 0 for each n . Then fn —► f

in L'([-2m ,2'"]), and 1(f) = 0. By going to a subsequence, we can assume

with no loss in generality that f„—>f a.e. in \-2m , 2m\. Hence, for almost all

such x ,

Mj(x) = (p(x)f(x) = tp(x) lim fn(x) = lim (M fn)(x).

In particular, this latter limit exists. Now M fn-I(M fn) —> h in L , for some

representative h of the coset g, and so some subsequence of this converges

a.e., that it

MJ   - It M f„)-*h        a.e. and    l(Mf ) -* a.

Hence,

\xm(Mipfnk)(x) = h(x) + a  a.e..

Thus, M f = h + a = g in BMO   /const.
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So M is a continuous linear operator on BMOUJ /const, and combining

with Theorem 1.5 gives the result.   D
■

2. Applications

Nowhere in the arguments of the previous section was any one-dimensional

property used. With no more than trivial changes, we have

Corollary 2.1.  tp multiplies BMOu, ,(R") or BMOUJ(R") if and only if

(a) tp G L°° , and

(b) ™Vu¿Q)UQW^ndx (Q\<p-Q(<p)[<C,

where this supremum is taken over all t-translates of dyadic cubes for BMOu) (

and over all cubes for BMOu,.   Here w  is assumed to be doubling, and for

BMOw,w(x)/(\ + \x\")GLl.

On the torus 7* in the complex plane, let 3¡t be the dyadic intervals in T

treating T as [t, t + 2tc] . And w , r-atoms are defined as usual, except that

a = 1 is a w , i-atom also. Everything carries through to this setting (Theorem

1.2 is easier).

Corollary 2.2.  tp multiplies BMOu) t(T) or HMOw(T) if and only if

(a) tp G L°°, and

(b) sup ̂ f^^dxf,],- 7(^)| <C,

where the supremum is taken over these t-dyadic intervals for BMO?/J , or over

all intervals for BMO)(). Here, as usual, w is doubling.

When
.     f      w(x)   j.:, 1

w=\, -—î—'— dx = log —
Jx£I \X — Xj\ \I\

and we get Stegenga's Theorem: tp multiplies BMO(T) if and only if tp G Lc

and

m,0Sw\ll"-miC-
For noncompact spaces like R" , (\/\x - XQ[)xRn^Q & L , which means that

only constants multiply BMO(R"). This is disappointing, although, as Ron

Kerman pointed out, it is a powerful reason for using weights.

A harder problem is to determine the multipliers of BMO(7) where 7 is a

bounded interval in R or cube in R" . The methods developed in § 1 can be

used effectively for such problems, and yield the obvious analogs of Stegenga's

theorem. We leave the details to the reader.

As a final application, we will look at a matrix analog of A weights. Much

of the following material appeared in [3], and for more details, the interested

reader is referred there.
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Let 77 denote the conjugate operator, or Hubert transform, on the unit circle

T. The commutator [77 ,Mb\f = H(bf)-b(Hf) is bounded on L2(T) if and

only if b G BMO [4]. Let Ln(T) denote the space of «-vectors with

= [¿/r</(?)'/(/)>í/'

1/2

< OO .

We say an n x n matrix B G BMO if each entry ¿>   G BMO
a

Theorem 2.3.  [77 , Mb] is bounded on L?n(T) if and only if B G BMO. More-
over,

ma* II bij-II BMO

is equivalent as a norm to the operator norm of [H ,Mb].

Proof. By writing / as 2~2f¡e¡ where {et} is the standard basis and f¡ are

scalar valued, it is easy to see that [77 , Mb] is bounded on Ln(T) if and only

if each [H ,Mb] is bounded on L (T), and the theorem reduces to the one-

dimensional theory.   D

Let W be a matrix-valued function on T with W(t) positive-definite and

symmetric. We have an inner product

(f,g)iV = ^j< W(x)f(x), g(x) > dx

iuces a

analog of A2 is:

which induces a Hubert space of vector-valued functions L (W). The matrix

WgW2     if 1177/11 w<C[[f[[w     for a\\f G L2(W).

For diagonal matrices, W G 9^ if and only if each wu G A2. For a discussion

of more general matrices in W2, see [1] or [3].

Theorem 2.4. If W g &2, so is W~x

Proof. The adjoint of 77 on L2(W) is
■ 2

H*f=-W  lH(Wf).

2,
Since W g % , 77* is bounded on L ( W), and so

i      r
= 2¿j(WW-iHf,W-lHf)

-1 2

HJWiv
"1 y\ m 2

= [\H*(W  7)||^

< C \\W       ![[„,

= C||/||2^,.     D
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Since W is positive-definite, it has a logarithm B. Let

rj, zB TT   —zB

Tz = e   He

_i 2
Since W and W    e?2, r±1/2 is bounded on Ln ( T), and complex interpo-

lation gives T  bounded for |z| < A . By Cauchy's Theorem,

T=—fz     2ni J\n=
^-dC,

ICI = l/2 C — z

and (d/dz)Tz\z=0 is bounded on L2n(T). But this derivative is [77, MB]. So

we have a matrix analog of the familiar one-dimensional result:

Theorem 2.5. If W gW2 then log W G BMO.

In one dimension, if b G BMO, then e'   G A2 for t sufficiently small. So

2.5 more or less characterizes A2. It is surprising that the matrix analog fails.

Theorem 2.6. There exist symmetric B G BMO for which e' & fë2 for any

r#0.

Proof. Let v g L°° be such that v does not multiply BMO. Now BMO =

L°° + HL°° . Since vL°° c L°° c BMO, v(HL°°) % BMO, and there exists a

ugL°° with vHu £ BMO. For B we take

77«   v~

v     0    '
B =

Suppose that ef e?2 for some t ^ 0. Then as above, T, would be bounded

in a neighborhood of zero, and all of the derivatives of T. at zero would be

bounded operators. These are higher-order commutators, and in one dimen-

sion, if the first commutator is bounded, they all are. We look at the second

commutator,

ß277 - 2BHB + HB2 .

Applying this to the vector (Ç) we get

[vHuHf - 2vH[H*uf] + H[v(hu)f]]

so the operator

(1) f^vHuHf-2vH(fHu) + H(vfHu)

is bounded.

and so
9   d    sHu+tv TT   -sHu-tv

dSöle       He

Now Hu + cv G BMO so that esHu+l" G A7 for 5 and / sufficiently small,

(0,0)

is bounded on L2. This is the operator

/ -► vHuHf - vH(Hu)f - HuHvf+H(Hu)vf.
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Subtracting (2) and (1) gives the bounded operator

(3) f^HuHvf-vH[(Hu)f].

Using elementary properties of the conjugate operator, (3) is the operator

(4) -[77 , MHJMV + Muv + MVH(MUH) + [77 , M{Hu)J.

Since u and v G L°° , the first three terms in (4) are bounded operators, so we

conclude that [77 ,Mvffu] is bounded on L , and hence that vHu G BMO, a

contradiction.   D
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