STABILITY OF SURFACES WITH CONSTANT MEAN CURVATURE

LI HAI-ZHONG

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. We estimate the Gaussian curvature of a conformal metric on a surface of constant mean curvature in space form $M^3(c)$. By use of the estimates, we study stability of surfaces with constant mean curvature in $M^3(c)$.

1. INTRODUCTION

Let $M^{3}(c)$ be the three-dimensional space form of constant sectional curvature c. Let M be a surface with constant mean curvature H in $M^{3}(c)$, gbe the induced metric, and K be the Gaussian curvature of g. We get the following results:

Theorem 1. The Gaussian curvature \overline{K} of the conformal metric $\overline{g} = \sigma g$ satisfies $\overline{K} \leq 1$, where

(1.1)
$$\sigma = \begin{cases} 2H^2 - K + 2c, \text{ when } c \ge 0\\ -K, \text{ when } c < 0 \text{ and } H^2 + c \le 0 \end{cases}$$

and $\overline{K} \equiv 1$ if and only if c = 0 and H = 0, or c < 0 and $H^2 + c = 0$.

Corollary 1.1 (Proposition 2.2 of [1]). Let M be a minimal surface of $M^3(c)$. Then the Gaussian curvature \overline{K} of the conformal metric $\overline{g} = \sigma g$ satisfies $\overline{K} \leq 1$, where $\sigma = 2c - K$, when c > 0, and $\sigma = -K$, when $c \leq 0$.

Let $X : M \to M^3(c)$ be an immersion with constant mean curvature H. Let $D \subset M$ be a domain in M with compact closure \overline{D} and piecewise smooth boundary ∂D . Following §5 of [4], we say that D is strongly stable if

(1.2)
$$I(f) = \int_{D} \left[\left| \nabla f \right|^{2} - 2(2c + 2H^{2} - K)f^{2} \right] dA > 0$$

for all functions $f: D \to R$ such that $f|_{\partial D} = 0$.

©1989 American Mathematical Society 0002-9939/89 \$1.00 + \$.25 per page

Received by the editors February 8, 1988 and, in revised form, August 30, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53A10, 53C42; Secondary 53A30.

Key words and phrases. Strongly stable, curvature estimate, surfaces of constant mean curvature.

Making use of Theorem 1, we obtain:

Theroem 2. Let $X: M \to M^3(c)$ $(c \ge 0)$ be an immersion with constant mean curvature H. Assume that $D \subset M$ is simply connected and that

(1.3)
$$\int_{\overline{D}} (2c - K + 2H^2) \, dA < 2\pi \, .$$

Then D is strongly stable.

Theorem 3. Let $X: M \to H^3(c)$ (c < 0) be an immersion with constant mean curvature H and $H^2 + c \le 0$. Assume that $D \subset M$ is simply connected and that

(1.4)
$$\int_{\overline{D}} -K \, dA < 2\pi \, .$$

Then D is strongly stable.

From definition of strongly stable, when H = 0, we easily see that strongly stable reduces to stable of minimal surfaces. We get from Theorem 2 and Theorem 3:

Corollary 2.1 ([5], Theorem 1.2 of [1]). Let $X : M \to M^3(c)$ $(c \ge 0)$ be a minimal immersion. Assume that $D \subset M$ is simply connected and $\int_{\overline{D}} (2c - K) dA < 2\pi$. Then D is stable.

Corollary 3.1 (Theorem 1.3 of [1]). Let $X: M \to H^3(c)$ (c < 0) be a minimal immersion. Assume that $D \subset M$ is simply connected and $\int_{\overline{D}} |K| dA < 2\pi$. Then D is stable.

Corollary 3.2 (Proposition 5.2 of [4]). Let $X: M \to H^3(-1)$ be an immersion with constant mean curvature one. Let $D \subset M$ be a simply connected compact domain. If $\int_D -K \, dA < 2\pi$, then D is strongly stable.

Let M is a minimal surface; it is a well known that the Gaussian curvature $\overline{K} \equiv 1$ of $\overline{g} = -Kg$. We now generalize the result to surfaces with constant mean curvature in $M^3(c)$.

Theorem 4. Let M be a surface with constant mean curvature H in $M^3(c)$ and M is not totally umbilic. Then the Gaussian curvature \overline{K} of $\overline{g} = \sigma g$ satisfies

(1.5)
$$\overline{K} = 1 - \frac{H^2 + c}{H^2 - K + c}$$

where $\sigma = H^2 - K + c > 0$, and $\overline{K} \equiv 1$ if and only if $H^2 + c = 0$.

Corollary 4.1. Let *M* be a minimal surface in \mathbb{R}^3 . Then the Gaussian curvature $\overline{K} \equiv 1$ of $\overline{g} = -Kg$.

Corollary 4.2 (Proposition 3 of [7]). Let M be a surface with constant mean curvature one in $H^3(-1)$. Then the Gaussian curvature $\overline{K} \equiv 1$ of $\overline{g} = -Kg$.

LI HAI-ZHONG

2. FUNDAMENTAL FORMULAS

Let M be a surface in $M^3(c)$ and let e_1, e_2, e_3 be a local field of orthonormal frames in $M^3(c)$, such that, restricted to M, the vector field e_3 is normal to M. Then, the second fundamental form B and the mean curvature H for M can be written as

(2.1)
$$B = \sum_{i,j} h_{ij} \omega_i \omega_j e_3, \qquad H = \frac{1}{2} \sum_i h_{ii}.$$

The Gauss-Codazzi equations for M are

(2.2)
$$K = c + 2H^2 - |B|^2/2$$
, where $|B|^2 = \sum_{i,j} h_{ij}^2$

(2.3)
$$h_{ijk} = h_{ikj}$$
 $(1 \le i, j, k, \dots \le 2).$

We denote by Δ the Laplacian relative to the induced metric on M. If H =constant, then ([2])

(2.4)
$$\frac{1}{2}\Delta|B|^{2} = |\nabla B|^{2} - |B|^{4} + 2c|B|^{2} - 4cH^{2} + 2HW$$

where

(2.5)
$$|\nabla B|^2 = \sum_{i,j,k} (h_{ijk})^2, \qquad W = \sum_{i,j,k} h_{ij} h_{jk} h_{ki}.$$

We get by a direct computation

(2.6)

$$2HW = 6H^{2}|B|^{2} - 8H^{4},$$

$$\therefore \lambda_{1} + \lambda_{2} = 2H, \quad \therefore \lambda_{1}\lambda_{2} = 2H^{2} - \sum_{2}^{\frac{|B|^{2}}{2}}$$

$$\therefore 2HW = 2H(\lambda_{1}^{3} + \lambda_{2}^{3})$$

$$= 2H(\lambda_{1} + \lambda_{2})(\lambda_{1}^{2} + \lambda_{2}^{2} - \lambda_{1}\lambda_{2})$$

$$= 6H^{2}|B|^{2} - 8H^{4}.$$

From (2.4) and (2.6), we have

(2.7)
$$\frac{1}{2}\Delta|B|^{2} = |\nabla B|^{2} - |B|^{4} + 2c|B|^{2} - 4cH^{2} + 6H^{2}|B|^{2} - 8H^{4}.$$

Proposition 2.1. Let M be a surface with H = constant in $M^{3}(c)$, then

(2.8)
$$|\nabla(|B|^2)|^2 = 2(|B|^2 - 2H^2) \cdot |\nabla B|^2 \le 2|B|^2 \cdot |\nabla B|^2$$
.
Proof At any point of M let $h = \frac{1}{2}\delta$, we have

Proof. At any point of M, let $h_{ij} = \lambda_i \delta_{ij}$, we have

(2.9)
$$|\nabla(|B|^{2})|^{2} = 4 \sum_{k} \left(\sum_{i,j} h_{ij} h_{ijk} \right)^{2} = 4 \sum_{k} \left(\sum_{i} \lambda_{i} h_{iik} \right)^{2} = 4 \sum_{k} (\lambda_{1} h_{11k} + \lambda_{2} h_{22k})^{2}.$$

But H = constant implies

(2.10)
$$h_{11k} + h_{22k} = 0, \quad \lambda_1 + \lambda_2 = 2H.$$

(2.9) and (2.10) yield

(2.11)
$$|\nabla(|B|^2)|^2 = 4(\lambda_1 - \lambda_2)^2 \sum_k h_{11k}^2 = 2(\lambda_1 - \lambda_2)^2 \sum_{i,k} h_{iik}^2$$
$$= 4(|B|^2 - 2H^2) \sum_{i,k} h_{iik}^2 .$$

On the other hand, we easily establish by a direct computation:

(2.12)
$$|\nabla B|^{2} = 3 \sum_{i \neq k} h_{iik}^{2} + \sum_{k} h_{kkk}^{2} = 2 \sum_{i \neq k} h_{iik}^{2} + \sum_{i,k} h_{iik}^{2}$$
$$= 2 \sum_{i,k} h_{iik}^{2}.$$

Combining (2.11) with (2.12), we obtain (2.8). Q.E.D.

3. Proofs of Theorem 1, 2, 3 and 4

(3.1) Proof of Theorem 1. Case
$$c \ge 0$$
: (1.1) and (2.2) yield

(3.2)
$$\sigma = 2H^2 - K + 2c = c + |B|^2/2 > 0,$$

where c = 0; we assume that M is not totally geodesic. Thus we can define a conformal metric $\overline{g} = \sigma g$ on M. As well known, the Gaussian curvature \overline{K} of \overline{g} satisfies ([3]):

(3.3)
$$\sigma \overline{K} = K - \frac{1}{2} \Delta \log \sigma \,.$$

By (3.2) and (3.3), we have

(3.4)
$$-\sigma \overline{K} = \sigma - 2(c + H^2) + \frac{1}{2} \frac{\Delta \sigma}{\sigma} - \frac{1}{2\sigma^2} |\nabla \sigma|^2.$$

From (2.7), (3.2) and Proposition 2.1, we get

$$(3.5) \quad \frac{1}{2}\Delta\sigma = \frac{1}{4}\Delta(|B|^2) = \frac{1}{2}|\nabla B|^2 - \frac{1}{2}|B|^4 + c|B|^2 - 2cH^2 + 3H^2|B|^2 - 4H^4$$
$$\geq \frac{1}{2}|\nabla\sigma|^2/\sigma - 2\sigma^2 + 6\sigma c + 6H^2\sigma - 4c^2 - 8H^2c - 4H^4$$

and equality holds if and only if c = 0 and H = 0. Noting $\frac{1}{4}(\lambda_1 - \lambda_2)^2 = |B|^2/2 - H^2 \ge 0$, then

(3.6)
$$\sigma = c + |B|^2/2 \ge c + H^2$$
.

From (3.5) and (3.6), we have

$$(3.7) \quad \frac{1}{2}\Delta\sigma \ge \frac{1}{2}|\nabla\sigma|^2/\sigma - 2\sigma^2 + 2\sigma c + 2H^2\sigma + 4(c+H^2)c + 4H^2(c+H^2) - 4c^2 - 8H^2c - 4H^4 = \frac{1}{2}|\nabla\sigma|^2/\sigma - 2\sigma^2 + 2\sigma c + 2H^2\sigma.$$

Combining (3.4) with (3.7), we get $\overline{K} \leq 1$ and $\overline{K} \equiv 1$ if and only if c = 0 and H = 0.

Case c < 0: Assume $H^2 + c \le 0$ and M is not totally umbilic. Then $\frac{1}{4}(\lambda_1 - \lambda_2)^2 = |B|^2/2 - H^2 > 0$, and

(3.8)
$$\sigma = -K = -c - 2H^2 + |B|^2/2 > 0.$$

Thus we can define a conformal metric $\overline{g} = \sigma g$ on M.

(3.3) and (3.8) yield

(3.9)
$$-\sigma \overline{K} = \sigma + \frac{1}{2} \frac{\Delta \sigma}{\sigma} - \frac{1}{2\sigma^2} |\nabla \sigma|^2.$$

From (2.7), (3.8), and Proposition 2.1, we get

$$(3.10) \ \frac{1}{2}\Delta\sigma = \frac{1}{4}\Delta(|B|^{2})$$
$$= \frac{1}{2}2\frac{|\nabla(|B|^{2})|^{2}}{(|B|^{2} - 2H^{2})} - \frac{1}{2}|B|^{4} + c|B|^{2} - 2cH^{2} + 3H^{2}|B|^{2} - 4H^{4}$$
$$\geq \frac{1}{2}\frac{|\nabla\sigma|^{2}}{\sigma} - 2\sigma^{2} - 2\sigma(H^{2} + c) \geq \frac{1}{2}\frac{|\nabla\sigma|^{2}}{\sigma} - 2\sigma^{2}.$$

Combining (3.9) with (3.10), we have $\overline{K} \leq 1$, and $\overline{K} \equiv 1$ if and only if $H^2 + c = 0$. Q.E.D.

(3.11) Proof of Theorem 2. Assume that D is not strongly stable. By the Smale's version of the Morse index theorem [6], there exists a domain $D' \subset D$ and a function $f: D' \to (0,\infty)$ so that $\Delta f - 2f(K - 2c - 2H^2) = 0$ in D', and $f|_{\partial D'} = 0$. Let g be the induced metric, from Theorem 1, the Gaussian curvature $\overline{K} \leq 1$ of $\overline{g} = (2H^2 + 2c - K)g$. By Proposition 3.13 of [1], $2 \geq \lambda_1(D^*)$, where D^* is a geodesic disk in a sphere $S^2(1)$ with curvature 1 and area of D^* is equal to the area of D' in the metric \overline{g} . Here $\lambda_1(D^*)$ is the first eigenvalue of the Laplacian of the sphere $S^2(1)$ on D^* . Since $\int_{\overline{D}}(2H^2 + 2c - K) dA < 2\pi$, the area of D' in the metric \overline{g} is smaller than 2π . It follows that D^* is contained in a hemisphere of $S^2(1)$ the first eigenvalue of which is 2. Thus

$$2 \ge \lambda_1(D^*) > 2$$

which is a contradiction. Q.E.D.

(3.12) Proof of Theorem 3. We first observe that, since c < 0 and $H^2 + c \le 0$,

(3.13)
$$I_{D}(f) = \int_{\overline{D}} [|\nabla f|^{2} - 2(2c + 2H^{2} - K)f^{2}] dA$$
$$\geq \int_{D} [|\nabla f|^{2} + 2Kf^{2}] dA = \widetilde{I}_{D}(f)$$

for all functions $f: D \to R$ such that $f|_{\partial D} = 0$.

996

To show that D is *strongly stable*, it suffices to show $\tilde{I}_D(f) > 0$ for all such f. The proof is similar to the proofs of Theorem 1.3 of [1] and above Theorem 2. We omit it here. Q.E.D.

(3.14) Proof of Theorem 4. We assume M is not totally umbilic, then

(3.15)
$$\sigma = H^2 - K + c = |B|^2 / 2 - H^2 = \frac{1}{4} (\lambda_1 - \lambda_2)^2 > 0.$$

We can define a conformal metric $\overline{g} = \sigma g$ on M. (3.3) and (3.15) yield:

(3.16)
$$-\sigma \overline{K} = \sigma - H^2 - c + \frac{1}{2} \frac{\Delta \sigma}{\sigma} - \frac{1}{2\sigma^2} |\nabla \sigma|^2.$$

From (2.7), (3.15) and Proposition 2.1, we get by a direct computation:

(3.17)
$$\frac{1}{2}\Delta\sigma = \frac{1}{2}\frac{|\nabla\sigma|^2}{\sigma} - 2\sigma^2 + 2\sigma(H^2 + c).$$

Combining (3.16) with (3.17), we have

(3.18)
$$-\sigma \overline{K} = -\sigma + H^2 + c , \text{ i.e. } \overline{K} = 1 - \frac{H^2 + c}{H^2 - K + c}$$

and $\overline{K} \equiv 1$ if and only if $H^2 + c = 0$. Q.E.D.

ACKNOWLEDGMENT

I want to thank the referee for his help.

References

- 1. J. L. Barbosa and M. do Carmo, Stability of minimal surfaces and eigenvalues of the Laplacian, Math. Z. 173 (1980), 13-28.
- 2. K. Nomizu and B. Smyth, A formula of Simon's type and hypersurfaces with constant mean curvature, J. Diff. Geom. 3 (1969), 367-377.
- 3. S. I. Goldberg, Curvature and homology, Academic Press, New York, 1962.
- 4. A. M. da Silverira, Stability of complete noncompact surfaces with constant mean curvature, Math. Ann. 277 (1987), 629-638.
- 5. J. L. Barbosa and M. do Carmo, On the size of minimal surface in R³, Amer. J. Math. 98 (2) (1976), 515-528.
- 6. S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965), 1049-1056.
- 7. R. L. Bryant, Surfaces of mean curvature one in hyperbolic space (preprint).

MATHEMATICS DEPARTMENT, ZHENGZHOU UNIVERSITY, ZHENGZHOU, HENAN, PEOPLE'S RE-PUBLIC OF CHINA