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ABSTRACT. We estimate the Gaussian curvature of a conformal metric on a sur-
face of constant mean curvature in space form M3(c) . By use of the estimates,
we study stability of surfaces with constant mean curvature in M3(c) .

1. INTRODUCTION

Let M 3(c) be the three-dimensional space form of constant sectional curva-
ture ¢. Let M be a surface with constant mean curvature H in M 3(c), g
be the induced metric, and K be the Gaussian curvature of g. We get the
following results:

Theorem 1. The Gaussian curvature K of the conformal metric g = ag satisfies
K <1, where

(L1) a_{ZHZ—K+2c,whenc20

-K, whenc<0andH2+csO
and K=1 ifandonlyif c=0 and H=0, or ¢ <0 and H*+c¢=0.

Corollary 1.1 (Proposition 2.2 of [1]). Let M be a minimal surface of M 3(c).
Then the Gaussian curvature K of the conformal metric g = og satisfies K < 1,
where 0 =2c— K, when ¢ >0, and ¢ = —-K, when ¢ <0.

Let X : M — M° (c) be an immersion with constant mean curvature H .
Let D C M be a domain in M with compact closure D and piecewise smooth
boundary 4D . Following §5 of [4], we say that D is strongly stable if

(1.2) 1(f) =/[|Vf|2—2(2c+2H2—K)f2]dA >0
D
for all functions f: D — R such that f|,, =0.
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Making use of Theorem 1, we obtain:

Theroem 2. Let X : M - M 3(c) (c > 0) be an immersion with constant mean
curvature H . Assume that D Cc M is simply connected and that

(1.3) /_(2c—K+2H2)dA<27r.
D

Then D is strongly stable.

Theorem 3. Let X : M — H3(c) (c < 0) be an immersion with constant mean
curvature H and H* + ¢ < 0. Assume that D C M is simply connected and
that

(1.4) /_—KdA<27t.
D

Then D is strongly stable.

From definition of strongly stable, when H = 0, we easily see that strongly
stable reduces to stable of minimal surfaces. We get from Theorem 2 and
Theorem 3:

Corollary 2.1 ([5], Theorem 1.2 of [1]). Let X : M — M3(c) (c > 0) be a mini-
mal immersion. Assume that D C M is simply connected and
J5(2c —K)dA < 2n. Then D is stable.

Corollary 3.1 (Theorem 1.3 of [1]). Let X : M — H3(c) (c < 0) be a minimal
immersion. Assume that D C M is simply connected and [;|K|dA < 2m.
Then D is stable.

Corollary 3.2 (Proposition 5.2 of [4]). Let X : M — H3(—l) be an immersion
with constant mean curvature one. Let D C M be a simply connected compact
domain. If [, —KdA < 2n, then D is strongly stable.

Let M is a minimal surface; it is a well known that the Gaussian curvature
K =1 of g =—-Kg. We now generalize the result to surfaces with constant
mean curvature in M 3(c) .

Theorem 4. Let M be a surface with constant mean curvature H in M 3(c) and
M is not totally umbilic. Then the Gaussian curvature K of g = ag satisfies

H +c
H>-K+c¢
where 6 =H> —K+¢>0,and K= 1 zfandonlyifH2+c=O.

(1.5) K=1-

Corollary 4.1. Let M be a minimal surface in R®. Then the Gaussian curvature
K=1ofg=-Kg.

Corollary 4.2 (Proposition 3 of [7]). Let M be a surface with constant mean
curvature one in H 3(—1). Then the Gaussian curvature K =1 of g = -Kg.
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2. FUNDAMENTAL FORMULAS

Let M be a surface in M>(c) and let e, ,e, ,e, be alocal field of orthonor-
mal frames in M 3(c) , such that, restricted to M, the vector field e, is normal
to M . Then, the second fundamental form B and the mean curvature H for
M can be written as

1
(2.1) B= ZhijwiwjeB ’ H= 2 Zhii‘
, iy i
The Gauss-Codazzi equations for M are
(2.2) K=c+2H —|B’/2,  where |B]’=Y_h
iyJ
(2‘3) hljk=hlkj (ISi,j,k,"°S2).

We denote by A the Laplacian relative to the induced metricon M . If H =
constant, then ([2])

(2.4) LA\BI® = |VB[* - |B|* + 2¢|B|* — 4cH® + 2HW
where
2 2
(2.3) VBl =3 (hy)™ s W= hyhyhy,.
iJj.k iJg.k

We get by a direct computation
(2.6) 2HW = 6H’|B|* — 8H*

1812
A +Ay=2H, A, =2H — Z
S 2HW = 2H(A +4))
= 2H(A, + A) (AT + 43 — 4,4,)
= 6H*|B* - 8H".
From (2.4) and (2.6), we have
(2.7) 1AB) = |VB* - |B|" + 2¢|B| - 4cH’ + 6H*|B|* - 8H".

Proposition 2.1. Let M be a surface with H = constant in M 3(c), then

(2.8) V(B = 2(BI* - 2H%) - |VB|* < 2B’ -|VB|*.
Proof. At any point of M, let h,.j =A1.0.., we have

iy

2 2
(2.9) |V(|B|2)Iz _ 42 (Z h,.jhijk) = 42 (Zlih,ik)
k iyJ k i

2
= 4Z(llhllk + 405"
X
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But H = constant implies

(2.10) i +hy =0, A +4,=2H.
(2.9) and (2.10) yield
2,2 2 2 2 2
(2.11) IVUBI)® =44, = A)" D )y =204 = A)" Y ki
k i,k

2 2 2
=4(|B|" - 2H")Y hyy .
ik
On the other hand, we easily establish by a direct computation:
2 2 2 2 2

(2.12) IVBI* =33 hiy+ > hg =2 hy+ Y iy

i#k k i#k ik

2
=2 h,.
ik

Combining (2.11) with (2.12), we obtain (2.8). Q.E.D.

3. PROOFSs OF THEOREM 1, 2, 3 AND 4
(3.1) Proof of Theorem 1. Case ¢ > 0: (1.1) and (2.2) yield
(3.2) c=2H-K+2c=c+|B|’/2>0,

where ¢ = 0; we assume that M is not totally geodesic. Thus we can define - a
conformal metric g = 6g on M. As well known, the Gaussian curvature K
of g satisfies ([3]):

(3.3) oK =K - Alogo.
By (3.2) and (3.3), we have
14s
20
From (2.7), (3.2) and Proposition 2.1, we get
(3.5) 3A0 = LA(B) = 4|VB[* - L|B[* + ¢|B]* - 2cH’ + 3H’|B* - aH"
> 1|Va|*/o - 20" + 60c + 6H’ o — 4’ — 8H’c — 4H*

and equality holds if and only if c=0 and H =0.
Noting 1(4, —4,)" = |B’/2— H* > 0, then

(3.4) —oK=0-2c+H)+252 _ %lVJIZ.
(2

(3.6) c=c+|B*/2>c+H.

From (3.5) and (3.6), we have
(3.7) 1Ac > Y|Val* /o — 26° + 20¢ + 2H g + 4(c + H')c + 4H (¢ + H)
- 4c* - 8Hc — 4H*
= %IValz/a —26% +20c+2H’g.
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Combining (3.4) with (3.7), weget K <1 and K =1 ifand only if ¢ =0
and H=0.

Case ¢ < 0: Assume H* +c¢ < 0 and M is not totally umbilic. Then
12, -4,)" =|BI’/2—H* >0, and

(3.8) o=-K=-c-2H"+|B|’)/2>0.

Thus we can define a conformal metric g =0g on M.
(3.3) and (3.8) yield

- 1 Ao 1 2
(3.9) —aK—a+§7—F|Va| .
From (2.7), (3.8), and Proposition 2.1, we get
1 1 2
(3.10) EAO' = ZA(lBI )
2,2
= 1 VUBDL__ Ligy g~ 2ch? 1 36787 - an?
2 (B -2H%) 2
1|Va| 2 2 1|Vo|? 2
> = - - > = -20°.
2 5 20" - 20(H +c)_2 5 20

Combining (3.9) with (3.10), we have K < 1, and K = 1 if and only if
H*+c¢=0. QE.D.
(3.11) Proof of Theorem 2. Assume that D is not strongly stable. By the Smale’s
version of the Morse index theorem [6], there exists a domain D' ¢ D and
a function f : D' — (0,00) so that Af — 2f(K —2c —2H*) = 0 in D',
and f|,,, = 0. Let g be the induced metric, from Theorem 1, the Gaus-
sian curvature K <1 of g = (2H2 + 2¢ — K)g . By Proposition 3.13 of [1],
2 > AI(D') , where D* is a geodesic disk in a sphere S2(1) with curvature
1 and area of D" is equal to the area of D' in the metric g. Here A (D")
is the first eigenvalue of the Laplacian of the sphere s? (1) on D*. Since
f3(2H2 +2c—-K)dA < 2m, the area of D' in the metric g is smaller than 27 .

It follows that D* is contained in a hemisphere of Sz(l) the first eigenvalue
of which is 2. Thus

2>4,(D")> 2,
which is a contradiction. Q.E.D.
(3.12) Proof of Theorem 3. We first observe that, since ¢ < 0 and H* +c¢<0,

(3.13) I(f) = /5[|Vf|2 —2(2c + 2H? — K) f*]dA

> / VP + 2K 1dA=1,(f)
D

for all functions f: D — R such that f],, =0.
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To show that D is strongly stable, it suffices to show I, p(f) >0 for all such
S/ . The proof is similar to the proofs of Theorem 1.3 of [1] and above Theroem
2. We omit it here. Q.E.D.

(3.14) Proof of Theorem 4. We assume M is not totally umbilic, then
(3.15) o=H -K+c=|B/2-H =14, -4,)">0.
We can define a conformal metric g =0g on M.

(3.3) and (3.15) yield:
140
20
From (2.7), (3.15) and Proposition 2.1, we get by a direct computation:

1, 1|Va]
(3.17) 540 = 51—

Combining (3.16) with (3.17), we have

(3.16) —6K=0-H —c+ —%lValz.
o

—26% +20(H* +¢).

H*+c

(3.18) —a?=—a+H2+c,i.e.f=l—2—
H —-K+c

and K=1 ifand only if H*+¢=0. Q.E.D.
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