
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 105, Number 4, April 1989

THE REPRESENTATION OF A PAIR OF INTEGERS

BY A PAIR OF POSITIVE-DEFINITE BINARY QUADRATIC FORMS

KENNETH HARDY, PIERRE KAPLAN AND KENNETH S. WILLIAMS

(Communicated by William Adams)

Abstract. An explicit formula is given for the number of representations of a

pair of positive integers by a representative set of inequivalent pairs of integral

positive-definite binary quadratic forms with given invariants.

0. Notation

2 2
By a form we mean a binary quadratic form f = (a ,b ,c) — aX +bXY+cY ,

which is integral (that is a ,b ,c are integers), positive definite (that is a > 0,

b1 - 4ac < 0) and primitive (that is GCD(a ,b ,c) = 1). The discriminant of

f, written disc(/), is the integer b  - 4ac.

1. Introduction

Two forms / and f are said to be equivalent (written / ~ f) if there

exists a transformation

«(?£(: :J(î).
where r ,s ,t ,u are integers satisfying ru -st = I , such that

(1.2) f(rX + sY ,tX + uY) = f(X ,Y).

The transformation x preserves disc(/). The relation ~ is an equivalence

relation on the set of forms with given discriminant d. It is well known that

the number h(d) of equivalence classes is finite. Let

(1.3) f¡ = a¡X2 + b¡XY + c¡Y2,       i = 1 ,2 , ... ,h(d),

be a representative set of inequivalent forms of discriminant d. The positive
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integer m is said to be represented by the form / if there exist integers x and

y such that

(1.4) m = f¡(x,y).

The number of pairs (x ,y) of integers satisfying (1.4) is denoted by \pd (m).

Clearly >pd'\m) is unchanged if the form f. is replaced by another form equiv-

alent to it. The total number of representations of m by a representative set

of inequivalent forms of discriminant d is

h(d)

(1.5) Wd(m) = y£Wd,)(m).
,=\

In [1] Dirichlet proved that if GCD(m ,2d) = 1 then

(1.6) Vd(.m) = wid)Yt{^)>
e\m  V     J

where e runs through all the positive integers dividing m , (d/e) is the

Kronecker symbol and

4 ,    if d = -4 ,

(1.7) w(d)= ¡6,    ifd = -3,

,2,    ifd^-3,-4.

In this paper we consider the representability of a pair of positive integers

(m , M) by pairs of forms and obtain results analogous to Dirichlet's formula

(1.6).

2. Pairs of forms

2 2 2 2
Two pairs of forms (f ,F) = (ax + bxy + cy , Ax + Bxy + Cy ) and

(f ,F') are said to be equivalent, written (f ,F) ~ (f ,F'), if there exists a

transformation x of the type given in (1.1) such that

(2.1) (f(rX + sY ,tX + uY), F(rX + sY ,tX + uY)) = (/' (X ,Y) ,F'' (X ,Y)).

The transformation x preserves d = disc(/) = b - 4ac, D = disc(F) =

B - 4AC, as well as the codiscriminant A = codisc(/ ,F) = bB - 2aC - 2cA

of the pair (f ,F) [3]. From now on we suppose that d , D, and A are given

and that there are pairs of forms (/ ,F) with disc(/) = d, disc(F) = D, and

codisc(/,F) = A. It is easy to prove [2] that

(2.2) A<0,       A -dD>0.

If A2 - dD = 0 it is straightforward [2] to show that d = D = A and that

any pair (f ,F) with these invariants must have f = F. Thus in this case

equivalence of pairs of forms reduces to the equivalence of forms described in

§ 1. Thus we may exclude this case and assume from now on that

(2.3) A2-dD>0.
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On the set of pairs of forms (f ,F) with specified d , D, and A, the relation ~

is an equivalence relation, and the number h(d , D , A) of equivalence classes is

finite [3]. A formula for h(d ,D , A) has been given by Hardy and Williams [2]

in the case when d and D are fundamental discriminants and GCD(dD , A) =

2l for some / > 0. We let

(2.4) (f. ,F¡) = (a¡X2 + b¡XY + c¡Y2 , A¡X2 + BtXY + C¡Y2),

i=l,2,...,h(d,D,A),

be a representative set of inequivalent pairs of forms with given d , D, and A.

We say that the pair (m, M) of positive integers is represented by the pair

(f¡,F¡) if there exist integers x ,y suchthat

(2.5) m = f¡(x,y),       M = F¡(x,y).

The number of pairs of integers (x ,y) satisfying (2.5) is denoted by 1*j, „ A

(m ,M). Clearly 4^'^ A(m ,M) is unaltered if the pair (f¡ ,F¡) is replaced

by another pair of forms equivalent to (f¡ ,F¡). The total number of repre-

sentations of (m , M) by a representative set of inequivalent pairs of forms

is

h{d ,D ,A)

(2.6) VdtDAim,M)=    ¿    ¥di]DA(m,M).
i=i

We prove the following theorem which gives the value of *Frf D A(m ,M) for

all positive integers m ,M for which

(2.7) GCD(m , 2d(A2 - dD)) = GCD(M, 2D(A2 - dD)) = 1.

2 2
Theorem, (a) If dM - 2AMm + Dm   is not a square then

(2.8) VdDA(m,M) = 0.

(b) If dM - 2AMm + Dm  = k   for some integer k and

(2.9) GCD(m , M) = GCD(m , 2d) = GCD(M, 2D) = 1

then

( 4 Jfk ?4 0,

2 2 2
(c) If dM - 2AMm + Dm  = k   for some integer k and

(2.11) GCD(m ,2d(A2 - dD)) = GCD(M ,2D(A2 - dD)) = 1

then

(2.12)

*dtDA(m,M) =

4 ,    ifk ^ 0 and GCD(m ,M) = l for some integer I,

2 ,    ifk = 0 and GCD(m , M) = / for some integer I,

[ 0 ,    ifGCD(m ,M)^l2 for any integer I.
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3. Proof of theorem (a)

If x¥d D A(m , M) > 1 then there are integers x and y and an integer i (1 <

i <h(d ,D,A)) suchthat

(m = a¡x2 + b¡xy + c¡y2

\ M = A¡x2 + B¡xy + C¡y2,

and so

(3.2) dM2 - 2AMm + Dm2 = k2,

where

(3.3) ±k = (a¡B¡ - b¡A¡)x2 + 2(a¡C¡ - c¡A¡)xy + (b¡C¡ - c¡B¿y2.

2 2
Hence if dM - 2AMm + Dm   is not a square, we must have *Vd D A(m , M) =

0.

4. Proof of theorem (b)

Throughout this section we assume that m , M are positive integers satisfying

(2.9) and that there exists an integer k such that (3.2) holds. The number of

pairs of integers n (mod 2m) and N (mod2M) suchthat

(4.1 ) n  = ¿/(mod 4m),       N2 = D (mod 4M),

and for which

(4.2) there exist representatives satisfying Mn - mN = k ,

is denoted by A(m ,M). We begin by determining A(m ,M).

Lemma 1.  A(m ,M) — 1.

Proof. Clearly, for any solution of (4.1) satisfying (4.2), one has

(4.3) Mn = k (modm),       mN s -k (modM).

Conversely, for any pair of integers (n0 , N0) for which (4.1) and (4.3) hold, we

have

Mn0 - mN0 = k(modm),

Mn0 - mN0 = k(modM),

Mn0 - mN0 = A/2«2, + m2N¡ = dM2 + Dm2 = k2 = A:(mod2) (by (3.2)),

and so

Mn0 - mN0 = k(mod 2mM).

Noting that

M(n0 + 2mr) - (N0 + 2MR) = (Mn0 - mNQ) + 2mM(r - R),

we see that the classes of «0(mod2m) and N0(mod2M) contain representa-

tives n and ./V satisfying Mn - mN = k , that is (4.2) holds. Thus we have

(4.4) A(m,M) = B(d ,m,M ,k)B(D,M ,m, - k),
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where B(d ,m ,M ,k) is the number of solutions «(mod2m) of

(4.5) n  =d(mod4m),       Mn = k(modm).

The congruence Mn = k(modm) has a unique solution n0(modm). For this

solution the congruence «0 = d(modm) is automatically true in view of (3.2).

The solutions mod 2m of Mn = k(modm) are given by

n0 + em ,       e = 0 or 1.

These solutions satisfy n  = ¿(mod 4) for the unique value of e such that

(n0 + e)  =<i(mod4).

Thus we have B(d ,m ,M ,k) — 1 and similarly B(D ,M ,m ,-k) = 1. Hence

(4.4) gives A(m ,M)=l as required.   D

The next lemma gives the automorphs of a pair of forms (f ,F).

Lemma 2. The only transformations

íM,:)(í) <™:"="
mapping the pair of forms (f ,F) into itself are given by

(;:M¡?)-
2 2

Proof. If d ,¿ -3 , - 4 the only automorphs of the form f = ax + bxy + cy

of discriminant d are

(!■?)

Thus the assertion of the lemma is clear unless (d , D) — (-3 , - 3), (-3,-4),

(-4,-3) or (-4,-4).

We just treat the case (d , D) — (-3 , - 3) as the other cases can be treated

similarly. As every form of discriminant -3 is equivalent to the form (1,1,1)

we may suppose by applying a suitable transformation to / that / = ( 1 ,1 ,1 ).

The only automorphs of / are

=•=(0 ?)•      ±(-°i   -1)'     and    ±(-l  o)"

The second of these transforms F — (A ,B ,C) into (C , -B + 2C ,A-B + C)

and so can only be an automorph for the pair (f ,F) if A = C, B = -B + 2C,

C = A-B + C, that is A = B = C, i.e., F = (1 ,1 ,1), and thus d = D =

A = -3 which is impossible as A - dD ^ 0. The third mapping transforms

F = (A ,B ,C) into (A - B + C ,2A - B ,A), and, exactly as above, we see

that it cannot be an automorph of the pair (f ,F). This completes the proof

of Lemma 2.   D

The next lemma is easily checked.
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2 2
Lemma 3. If d = n  - 4ml, D = N - 4ML then the following is an identity

dM2 + Dm2 - (mN - Mn)2 = 2mM(nN - 2mL - 2MI).

We are now ready to prove Theorem (b). If (x ,y) is a pair of integers, we

set

[x,y] = {(x,y),(-x,-y)}

and for i = I ,2 , ... ,h(d ,D ,A) we let

S¡ = {[x ,y]\m = a¡x + b¡xy + c¡y , M = A¡x + B¡xy + C¡y }.

We remark that if [x , y] e S¡ then GCD(x ,y) = l as GCD(m,M) = 1. The

set of all pairs ([x,y],i) with [x ,y] e S¡ and i = 1 ,2, ... ,h(d ,D,A) is

denoted by 5. Clearly we have

(4.6) card(S) = \VdDA(m,M).

Recalling that m and M are positive integers satisfying (2.9) and for which
2 2 2

dM - 2AMm + Dm  = k   is solvable, we set

Cm,M = {("(mod2m), N(mod2M)) \ n  = d(mod4m), N2 = D(mod4M),

Mn - mN = ±k}.

By Lemma 1 we have

if k ¿ 0,
(4-7) card(C    „) -íí:

m'Ml I   1,       ÍfrC = 0.

Next we define a mapping T:S —» Cm M as follows: if [x , y] e S¡, where

1 < / <h(d ,D,A), then

(4.8) T(([x , y], i)) = («(mod 2m), N(mod 2M)),

where

(4.9) n = 2a¡xp + b¡(xX+yp) + 2c¡yX ,       N = 2A¡xp + B¡(xX+yp) + 2C¡yX,

and X , p are integers such that

(4.10) Xx-py=l.

We must show that T is well defined and that range(T) ç Cm M . To see that

T is well defined we have only to note that if (X, p) is replaced by another

solution (X + ty ,p + tx) of (4.10) then n and N are unchanged (mod2), and

if (x ,y) is replaced by (-x , - y) then (X,p) can be replaced by (-X , - p)

and n and N remain the same.

Next we show that T maps into C   M . By the transformation
m ,M

Gs)
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the pair of forms   ((a¡ ,b¡ ,c¡) ,(A¡ ,B¡ ,C¡))   becomes the pair   ((m,n,l),

(M ,N,L)), where

(4...) í=^,   l=n*-d
4m    ' 4M    '

2 2
and so n = d(mod4m), N = D(mod4M). As A = nN - 2mL - 2MI, by

(3.2) and Lemma 3, we have Mn - mN — ±k .

Now we prove that T maps onto Cm M . Let ((«(mod2m), N(mod2M)) e

Cm M so that «2 = ¿(mod 4m), N2 = D(mod4M), Mn - mN = ±k. We

define integers I ,L as in (4.11). The forms (m,n,l) and (M ,N ,L) have

discriminants d and D, respectively, and, by Lemma 3 and (3.2), their codis-

criminant is A. Hence, for a unique integer /' (1 < i < h(d ,D ,A)), we have

((ro, n, I), {M, N, L)) ~ ((a¡, b¡, c¡), (A¡, B¡, C¡)).

If

:í!.v-
where Xx-py = 1, is a transformation mapping ((a¡, b¡, c¡), (A¡, B¡, C¡)) into

((m,n ,1) ,(M ,N ,L)) then [x ,y] e S¡, and T(([x ,y] ,i)) = (n(mod2m),

N(mod2M)). This proves that range(T) = Cm M .

Finally we show that T is one-to-one. Suppose that

T([x,y],i) = T([x', y ],/').

Then there exist integers n ,N ,n ,N' ,t ,T and two transformations

T =

such that

ßx)(xX-py=l),       t'=(J,'   ^yx'x'-y'p'=l)

(4.12) n = n' + 2tm,       N = N' + 2TM,

(4.13) ((a¡,b¡,c¡),(A¡,B¡,C¡)) -U ((m ,n ,1) ,(M ,N ,L)),

(4.14) ((a¡, ,b¡, ,c¡,),(A¡, ,B¡, ,C¡,)) ^ ((m,n ,/') ,(M ,N' ,l')) ,

(4.15) Mn-mN = ±k,       Mn -mN' = ±k,

where I ,L are defined as in (4.11), and /' ,ll are defined similarly. Clearly

Mn — mN = ±(Mn - mN1) and we show that

(4.16) Mn-mN = Mn - mN'.

For otherwise Mn - mN = -(Mn - mN1) and appealing to (4.12) we obtain

mM(T - t) = Mn - mN. As GCD(m ,M) = 1 we see that «i|« and M\N,

and so by (4.15) we have mM\k. Hence from (3.2) we have m\d and M\d,

contradicting GCD(m ,2d) = GCD(M,2D) = 1. This proves (4.16). From

(4.12) and (4.16) we deduce that t = T and so
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maps ((m ,«,/), (M, N , L)) —> ((m , n , /'), (M , N', L1)), proving that i —

i , and that x 8x is an automorphism of the pair ((a¡, b¡, c¡), (A¡, B¡ ,C¡)).

Hence by Lemma 2 we have

(¿?)(íi):*(y.-í)(íí).-

implying [x' ,y'] = [x ,y]. This completes the proof that T is one-to-one.

Thus T is a bijection from S to Cm M and so by (4.6) and (4.7) we have

1 f 2 ,    if k ¿ 0 ,
2^*¿m■M) = card(5)-card(c™ji\'r {i\ ifkío,

completing the proof of Theorem (b).

5. Proof of theorem (c)

Throughout this section we assume that m ,M are positive integers satisfying

(3.2) and (2.11).

First we show that if GCD(m , M) ^ / for any integer / then yVd D A(m , M)

= 0. For suppose x¥d D A(m , M) > 1 . Then there exists i ( 1 < /' < h(d , D , A))

and integers x ,y such that

m = a¡x2 + b¡xy + c¡y2,

M = A¡x2 + Btxy + C¡y2.

Also from (3.3) we have

(5.2) ±k = (a¡B¡ - b¡A¡)x2 + 2(a¡C¡ - c¡A¡)xy + (b¡Cl - c,5,)y2.

Solving (5.1) and (5.2) for x  ,xy and y , we obtain

(A2 - dD)x2 = 2(c,D - C,A)m + 2(C¡d - c¡A)M + 2k(b¡C¡ - c¡B¡),

(5.3) (A2 - dD)xy = (B¡A - b¡D)m + (b¡A - B¡d)M ± 2k(a¡Ct - c¡A¡),

(A2 - dD)y2 = 2(a¡D - A¡A)m + 2(A¡d - a¡A)M + 2k(a¡B¡ - btA¡).

As GCD(m , M) is not a square, there exists a prime p and a non-negative
2r+ 1

integer r such that p      \\GCD(m , M). As m and M are odd we have p ^ 2 .
2f+ 1

Further from (3.2) we see that p  " \k and so from (5.3) we have

(5.4) p2r+l\(A2-dD)x2,       p2r+l\(A2-dD)y2.

By (2.11) we have p { A -dD and so pr+ \x and pr+ \y. Thus from (5.4) we

have p r+ \m and p r+ \M contradicting p r+ \\GCD(m ,M).

Finally, if GCD(m ,M) = I , for some integer /, then it is easy to check

using (5.1), (5.2), and (5.3) that the mapping (x ,y) —> (x/l ,y/l) is a bijection

from the set of representations of (m, M) by a set of inequivalent pairs of
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2 2
forms with invariants d ,D , A and the set of representations of (m/l  ,M/l )

by the same set of pairs of forms. Thus we have, by Theorem (b),

2 2       Í 4,    if k/l2 ± 0,
*W n a("»,/) = ^ n Am/     ,M/l ) = { 7

d,DAy d,DA\   i        i   )    i2     if k/l2 = 0,

4,       if rC JÉ 0 ,

2 ,    if fc = 0 ,

as required. This completes the proof of Theorem (c).   D

6. An example

We take ¿ = -11, Z> = -11, A = -19 so that A2 - dD = 240. Every pair

of forms with these invariants is equivalent to exactly one of the pairs

((1,1,3),(3,1,1)),

((1,1,3),(3,5,3)),

((1,1,3),(1,-3,5)),

((1,1,3),(1,5,9)),

so «(-11 , - 11, - 19) = 4.

If we take m = 97 and M = 31 (so that GCD(m,M) = GCD(m ,2d) =

GCD(M , 2D) = 1) we have dM2 - 2AMm + Dm2 = 196, so k = ±14. Thus

by Theorem (b) we must have ¥_,, _,, _,9(97 ,31) = 4. Indeed

97 = x2 + xy + 3y2 ,       31 = x2 - 3xy + 5y2,       with (x ,y) = ±(7 ,3),

97 = x2 + xy + 3y2,        31 =x2 + 5jcv + 9v2,       with (x , y) = ±(10 , - 3).

Finally, we remark that the choice m = M — 3 shows that the condition

GCD(m ,A2 - dD) = GCD(M , A2 - dD) = 1 is necessary in Theorem (c) as

3 = x  + xy + 3y  = 3x + xy + y

is solvable with (x ,y) = ±(l , - 1).
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