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DAVID B. LEEP AND DANIEL B. SHAPIRO

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Theorem. If G be a subgroup of index 3 in the multiplicative

group F* of a field F , then G + G = F , except in the cases \F\ = 4 , 7 , 13,
or 16 . The elementary methods used here provide a new proof of the classical

case when F is finite.

If F is a finite field and \F\ ?¿ 4 or 7, then every element c e F can be

expressed as a sum of two cubes: c = x + y for some x , y e F . Furthermore

such x, y exist with xy ^ 0 in F provided \F\^ 4, 7, 13, 16. Versions

of these results have appeared in various forms in the literature. For example,

see [3 p. 95 and p. 104, 7, 8, and 9]. This theorem also follows from the known

values of the cyclotomic numbers when e = 3, as given for example in [10,

p. 35].
We present here a generalization to arbitrary fields. If F is a finite field

where the multiplicative group F* has order divisible by 3, then the nonzero

cubes F*3, form the unique subgroup of index 3 in F*.

Theorem. Let G be a subgroup of index 3 in the multiplicative group F* of a

field F. Then G + G = F, except in the cases \F\ = 4, 7,  13, or 16.

The Theorem is proved in an elementary fashion, not using the classical

results mentioned above. It is valid for fields of any cardinality and any char-

acteristic.

1. Preliminaries

Let G ç F* be a subgroup of finite index n. Then x" e G for every

x e F*. Let VJ G denote the additive closure of G. That is, J2G - {gx+ g2 +

■■■ + 8m\g, e G}. Then P = ¿Z,G satisfies P + PCP and P-PQP. Also, if

O^xeP then x~  eP, because x~  = xn~ (x-1)"-

1.    Lemma. Suppose -1 e P = X) G. Then P is a subfield of F.

(I) If F is infinite then P = F.
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(2) // F   is finite with   [F: P]   «=  d   and  \P\   =  q   then   [F* : P*]   =
(qd-l)/(q-l).

Proof. If -1 e P = J2 G then P is also closed under subtraction, so that P is

a subfield of F . (1) Suppose P ^ F and choose a e F with a £ P. Then the

cosets (a + a)P* are all distinct for a e P. For if (a + a)P* — (b + a)P* where

a, b e P then a+a = (b+a)c for some c eP. Then a-bc = (c-l)a implies

c = 1 and a = b . Since G ç P*, we have n = \F*/G\ > \F*/P*\ > \P\ > \G\.

This implies F* is finite, contrary to hypothesis. (2) \F\ = q so the index is

[F*: P*] = \F*\/\P*\.     a

If -1 ^ J2 G then VJ C7 is a "torsion preordering" of the field F. These

preorderings and the related "orderings of level n " have been studied exten-

sively by E. Becker. See [ 1 ] for a survey of this theory. For our question, even

the case when the index is 2 provides some difficulty.

2. Proposition. Suppose G is a subgroup of index 2 in F* and \F\^3, 5.

Then one of the following holds.

(1) G + G = G and G is the positive cone of an ordering in F.

(2) G + G D F*, with equality if and only if -I £ G.
Furthermore, if a £ G then G + aG D F* with equality if and only if -l eG.

Proof. Suppose first that G + G C G U {0}. If -1 g G then G + G = G
and F* = G U -G so that G is the positive cone of an ordering. (See [5]

or other algebra texts for information on orderings.) Otherwise -1 e G and

P = £ G = G U {0} . By hypothesis we know that [F* : P*] = [F* : G] = 2.

But Lemma 1 states that if F is infinite then this index equals 1, and if F is

finite it equals (q  - l)/(q — 1). Both cases are impossible.

Now suppose there exists x e G + G with x £ Gu{0}. Then F* = GuxG

and xG c G + G.

Claim. There exists g e G with g e G + G. To prove this first suppose

char F ¿ 2 . The identity (x2 + I)2 = (x2 - I)2 + (2x)2 shows that G meets
2 2

G + G, provided we can choose x e F with x + 1, x - 1, and 2x nonzero.

These polynomials have at most 5 roots, so since |F| > 5 the claim is proved.

Now suppose F has characteristic 2. If F is finite then \F* \ is odd contrary

to the existence of G. If F is infinite we can choose a e F with a ^ 0, 1.
2 ^

Then (I + a)  =l+a~eG + G,as claimed.

From the Claim we conclude that G C G + G and hence F* = G U xG ç

G + G. To complete the proof of (2) we see that 0 £ G + G if and only if

-1 ^ G. For the last statement, note that G + aG must meet (and hence

contain) one of the two cosets. Scaling by a shows that G + aG 3 G iff

G + aG2aG. Then G + aG D G U aG = F*. Finally we have 0 g G + aG if
and only if -1 <£ aG if and only if -1 € G.     D

Remark. There are no proper subgroups of finite index in C* and no subgroups

of finite index greater than 2 in R*, because C* and R+ are divisible groups.



804 DAVID B. LEEP AND DANIEL B. SHAPIRO

In the rational field Q there are many multiplicative subgroups of finite index

in Q*, because Q* is generated by the set 3* = {-1} U { primes in Z+} . To

form a subgroup of index 2, choose any partition ¿P = Au B where B is

nonempty, and define G = G(A , B) to be the subgroup of index 2 with A ç G

and B ç xG (where xG is the nontrivial coset).   That is,  G is generated

by all nonzero squares, all a e A and all products bxb2 where bx ,b2 e B.

For example if A — {-1} and B = {all primes} then an integer n lies in

C7, = G(A ,B) iff n = ±pxp2-pk where the p¡ are primes and k is even.

Similarly if A is empty and B = a0 then an integer lies in G0 — (7(0 ,9s) iff
k

n — (-1) PxP2-Pk where the p¡ are primes. If 9a is partitioned into three

subsets, ¿P = AuBuC where BuC is nonempty, then there is an associated

subgroup G = G(A ,B ,C) of index 3 with A ç G and with B lying in one of

the nonidentity cosets and C in the other. Further details and generalizations

are omitted.

2. Proof of the Theorem

Throughout this section we assume that G is a subgroup of index 3 in

the multiplicative group F*. This implies that F* CG, and in particular

-l eG. We begin the proof by establishing a technical lemma which says that

a given proper finite subgroup can be avoided.

3. Lemma. Suppose G is a subgroup of index 3 in F*. Let H ç. G be a finite

proper subgroup of G. Then there exists g e G with i — g 0 G and g $ H.

Proof. First we find one g e G with g # 1 and 1 -g £ G. If G+G ç Gu{0}

then C7u{0} is additively closed and Lemma 1 yields the contradiction G = F*

if F is infinite. If F is finite, then using the notation from Lemma 1 we have

3 = (qd - l)/(q -I). This implies \F\ = 4 and |G| = 1 so that G has no

proper subgroup, contrary to hypothesis. Therefore there exist a, b e G with

a + b £ G U {0}. Defining g = -a" b we have g e G with g ^ 1 and

I - g $ G. Let us fix this element g.

Suppose the conclusion of the Lemma fails, and choose any c e G\H. Since

c £ H the hypothesis implies 1 - c e G. Also since I - g $ G we have

g e H. Therefore eg £ H, so that 1 - eg e G. Since (1 - c) - ( 1 - eg) =

-c(l-g) <£ G, we know that x = (l-cg)/(l-c) e G satisfies l-x £ G, and

hence x e H. Moreover x ^ g since g ^ 1 . Letting n = \H\, we conclude

that there are at most n - 1 possibilities for x, and hence also for c since

c = (x- l)/(x - g). Therefore \G\H\ <n-l so that \G\<n + n-l< 2\H\.

This implies G = H contrary to the hypothesis.     D

Any finite subgroup of F* is cyclic, so we are dealing with the various cyclic

subgroups Hk = {x G G: x   = 1} . We will apply the lemma in the cases k - 2,

4, and 5. When k = 5 we have n = |//5| divides 5 . Thus if |F| > 16 so that

|G| > 5 then we can avoid H5. Similarly if |F| > 13 we can avoid H4 and if

\F\ > 1 we can avoid H2.
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Now we proceed with the proof of the Theorem.

4. Lemma. For F and G as above suppose the 3 cosets are G, aG and a G.

If \F\ > 1, then aGua2GCG+G.
■y

Proof. By Lemma 3 there exists g e G with 1 — g <£ G and g ^ I . Then

1 - g and 1 + g are nonzero. We may choose the coset representative a in

the Lemma to be 1 - g. Since aeG + G we have aG ç G + G. Suppose the
2 2

claim is false so that a G is not in G + G. Then G + G does not meet a G

and aG + aG does not meet G.

Since I + g e G + G we have  1 + g £ a2G. Similarly (1 + g)(l - g) =
2 2

l - g <£ a G and cancelling a - I - g shows that 1 + g $. aG. The

only possibility is I + g e G. Then also 1 - g e aG. Next we analyze the

element 2. Since 2=1 + 1 we see 2 ^ a G. If 2 e aG we would have

l+<g- = (l-g') + 2<g-eGn (aG + aG) contrary to hypothesis. Finally, if 2 = 0

then (I - g) = I + g e a Gn(G + G), a contradiction. The only remaining

possibility is 2 e G.

We can now analyze l+g2. First we easily see l + g2 £ a2G. If l+g2eaG

then I - g4 = (I + g2)(l - g2) e (G + G) n a2G, a contradiction. Similarly if

l+g2 e G then (l-g)2 = (1 + g2)-2g e a2Gn(G + G). Finally if l + g2 = 0
2 2

then -2g = (1 - g) e a G, another contradiction. All the possibilities for

1 + g   have been eliminated.     D

5. Lemma. // \F\ > 16 then GQG + G.

Proof. Suppose the claim is false so that G + G does not meet G. Since

\F\ > 13 there exists g e G with l—g £ G and g4 ^ 1 . Then 1 - g, I + g,
2 2

1 - g and l + g are nonzero. Let a— I - g so that a £ G as before. Then

l+g e G + G so that l+g <£ G. Also (1 + g)(l - g) = 1 - g2 £ G so

that 1 + g £ a2 G. Therefore I + g e aG. Similarly l+g2 £ G and since

1 - g2 e a2G and (1 + g2)(l - g2) = 1 - g4 $ G we find I + g2 e a2G.

Where does 2 lie? We have 2=1 + 1 £ G, 2 = (1 - g) + (1 + g) <£ aG and

2 - (I + g ) + (I - g ) <£ a G. This is a contradiction provided 2 / 0.

Suppose F has characteristic 2. Since |F| > 16 Lemma 3 implies that there

exists h e G with I —h $ G and h ^ 1. Let a = 1 + h $ G with the cosets

as before. Then (1 +h)(l +h + h2 + h3) = 1 +h4 = (1 +hf e aG, and we have
2 1 "\

l + h + h + h eG. It follows that 1 + h ^ 0, for otherwise we would have

h( 1 + h) = h + h2 eG, a contradiction. Now (1 +h + h2)(l +h) = l+h3 £ G,

so that Oji l+h + h2 £ a2G. Also 1 + h + h2 = (1 + A)3 + h3 <£ G, and

we have 1 + h + h2 e aG. Let x = I + h + h2 + h3 + h4. Then x(l + h) =

1 + h £ G so that x £ a G. Also x / 0 since A ^ 1. Finally note that

x = (l+h + h2 + h3) + h4 i G and x = (l + h) + h2(l + h + h2) <£ aG. This

eliminates all possibilities for x, proving the lemma.     D

Lemmas 4 and 5 show that if \F\ > 16 then G, aG and a G all lie within

G + G, and therefore G + G = F. Finally suppose |F| < 16 . Since |F| = 1
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(mod 3) we have \F e {4,7,13,16}. Suppose F = G + G for one of these

fields. Listing G = {gx , g2, ... , gn} we have G + G= {g¡ + gj : i < j} . Then

3« + 1 = \F\ = \G + G\ < n(n + 1 )/2. This implies n - Sn - 2 > 0, so that
n > 6 and |F| > 19. Therefore the cases q = 4, 7, 13, and 16 must be

exceptional. The proof of the theorem is now complete.

To finish our analysis of the additive structure of G we consider sums of

other cosets. H a fÉ G then certainly 0 ^ G + aG. Does G + aG always equal

F* ?

6. Proposition. Suppose G has index 3 in F* and suppose a e G + G with

a <£ Gu{0}.
(1) If F is finite then G + aG = F* except when \F\ — 4 or 1.
(2) If F is infinite then G U aG ç G + aG. There are examples where

a2G<£G + aG.

Proof. Expressing a = g + h for g, h e G we have g = -h + aeG + aG,

so that G ç G + aG.   If \F\ ^ 4,  7 then Lemma 4 implies that we can
2 3

write a = x + y where x , y e G. Then ax = a - ay e G + aG, so that

aG ç G+aG. To complete the proof of (2) we furnish an explicit example. Let

F = Q   be the field of /?-adic numbers with /7-adic valuation v , and let G =

v~ (31) - {p u: k el and « is a /»-adic unit}. Then F* = GupGup G.

There cannot be an equation gx + pg2 = p g3 because these three quantities

have unequal p-adic values.

To finish the proof of (1) we show that a2G ç G + aG when \F\ = q is

finite. We copy the counting argument found in Lemma 1 of [6]. Let W =

{g- 1: 1 ¿ geG}. Then \W\ = (q-4)/3. Let V = Gu WuW~x and note

that \V\<q-3. Choose ô e F* with Ô <£ V. Then Ô £ G and since Ô

and a-1 £ W we have 1 + à and 1 +<T' £ G. Then 1 + ô i GuôG,

forcing  1 + ô e ô G.   Therefore â2G ç G + ôG.   Scaling by ô    we also
2 2

find ôG C G + ô G. Since aG equals either ôG or ô G we conclude that

a2GçG + aG.     D

3. Open questions

What happens when the index of G is greater than 3 ? When F is finite a

positive answer can be given as before.

7. Theorem. Let F = F be the finite field of q elements. Suppose e is a

positive divisor ofq-l and let a, b e F*.

(1) if q > (e - 1) then every element of F is expressible as axe + bye, for

x, y e F.

(2) If q > (e - 1 ) +4e then every element of F* is expressible as axe + bye,

for x, y e F*.

Proof. For c e F* let N(c) be the number of solutions (x ,y) e F x F of

axe + bye = c. The estimate \N(c) - q\ < (e - l)2-Jq appears in [4 p. 57]. In
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[9] this estimate was used to prove (1). Part (2) follows similarly be requiring

that N(c) be more than 2e, the maximal number of trivial solutions.     D

For more information on these techniques see Chapter 8 of [3]. Slightly better

bounds than those in Theorem 7 were obtained in [2]. These improvements can

be derived using Theorem 5 on p. 103 of [3].

With these estimates and some calculations one can list the exceptional finite

fields for any given exponent e. For example here are the results when e is 4

or 5.

8. Corollary. Let F - Fg be the finite field of q elements.

(1) Let G = F*4. Then G + G = F* if q = 3,5,7 (mod 8) and G + G = F
otherwise, except for the cases q = 3 ,5 ,9 ,13,17,25,29 and 41.

(2) Let G = F*5. Then G + G = F except for the cases q= 11 ,16,31 ,41 ,

61 ,71 and 101.

It is natural to hope that our Theorem on index 3 can be generalized to

subgroups of higher index. To be concrete we make an explicit conjecture when

e = 5. We have been unable to prove it even when F is the field of rational

numbers.

9. Conjecture. If F is an infinite field and G is a subgroup of index 5 in F*

then G + G = F.
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