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EXISTENCE OF NONNEGATIVE SOLUTIONS OF A

SEMILINEAR EQUATION AT RESONANCE
WITH LINEAR GROWTH

JAIRO SANTANILLA

(Communicated by Paul S. Muhly)

Abstract. A coincidence degree result is established to study sufficient con-

ditions for the existence of nonnegative solutions of a semilinear equation at

resonance in which the nonlinearity has at most linear growth. Nonnegative so-

lutions to some boundary value problems are obtained to illustrate the theory.

The problem of existence of solutions in a convex set, or nonnegative solu-

tions, for abstract semilinear equations at resonance has been recently consid-

ered by Nieto [20], Gaines and Santanilla [9], Mawhin and Rybakowski [19],

and Santanilla [22]. They have considered the problem of existence of solutions

to

(1) Lu = Nu

in a convex set, where L: dorn LcI->Z is a Fredholm operator of index zero,

N:X -» Z is not necessarily linear and satisfies a compactness property relative

to L, and X , Z are real Banach spaces. Using the alternative method, Nieto

[20] introduced sufficient conditions for the existence of solutions to Equation

( 1 ) in a cone, when the nonlinearity N is bounded. In this paper we shall use

coincidence degree [8, 18] to present an extension of Nieto's result when N

grows linearly and C is a wedge. Our result implies the Granas fixed point

theorem and some results of Cesari and Kannan [3, 6] which have been exten-

sively used in differential equations [3, 4, 5, 7, 15, 16]. We shall also apply our

abstract results to discuss the existence of nonnegative solutions to some bound-

ary value problems when the nonlinearity is a Carathéodory function and has

at most linear growth.

Notation and Definitions. Throughout this paper we shall assume that L is a

linear Fredholm operator of index zero; i.e. the image of L, im L, is closed
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in Z and dim(kerL) = codim(imL) < oo. It follows from standard results

of linear functional analysis that there exist continuous projectors 7>: A —► A

and Q:Z —» Z such that imP = kerL and kerß = imL. We denote by

K : imL —> domL n kerP the partial inverse of L and by J an isomorphism

from imQ onto kerL. We assume that 0 < \\K (I - Q)\\ < oo .

Let fid be an open bounded subset of X. We assume that N: f2 —► Z is

L-compact on Q ; i.e. QN: Q —► Z and K (I - Q)N: Q —► X are compact on

Í2. The reader is referred to [8, 18] for a complete discussion of coincidence

degree.

Suppose there exists a continuous bilinear form on Z x X

(Z  ,X)r-+   (Z  ,X)

such that

z G im L if and only if (z , u0) = 0

for every u0 G kerL. Thus, if {v{ , v2, ... , vn} is a basis of kerL, then

.7:imß->kerL
n

is an isomorphism and (J~ u0 , u0) > 0 if «0 ^ 0.

Finally, C will denote a wedge in X ; i.e. C is a nonempty closed convex

subset of X such that aC c C for all a > 0. We shall assume that there

exists a continuous retraction y: X —> C of C, mapping bounded sets into

bounded sets.

Theorem 1. Assume that the following conditions are satisfied.

(i) There exists constants c, > 0 and 0 < c2 < [[Kp(I - Q)[\~   such that

\\Nu[\<cl+c2\[u\\

for all ugC .
(ii) There exists R > 0 such that

(2) (QN(u0 + Ul), u0)<0

for all u = u0 + «, G C, where u0 G kerL , ||«0|| = R, uYG ker7>, and

l|w, || <ps (c, * c2/?)/(||/c:p(/ - ß)|f ' - c2).

(iii) (P + JQN + 7y7 - Q)N)y(Q) c C, where

Q = {u = u0 + u{G A:||w0|| < R, ||m,|| < /£>}.
_

77zev3 Lu = Am //ai ai least one solution u efinC.

Proof. Consider the homotopy

M(u ,k) = k(P + JQN + K (I - Q)N)yu ,       k G [0 , 1], u G Ô.



SOLUTIONS OF A SEMILINEAR EQUATION 965

If u = M(u ,k) for some u G dQ. and some k G (0,1), then ugC and

u = k(Pu + JQNu + Kp(I - Q)N)u.

Thus,

u0 = k(Pu + JQNu),       ul=kKp(I-Q)Nu.

If ||w0|| = R and ||w, || < p, we have

_,
0<(1-A)(7    u0, u0) = k(QNu,u0) <0,

a contradiction.

If ||«0II ̂  -ß and ||«i|| = P, we obtain

^ = ||Mj|| = A||^(/-ß)Ar«||

<'A||jc;(/-ö)fi(c1+c>i|)

<A||*„ (7 -ß)||(c,+c2JR + c2/>)

< c2[\Kp (7 - Q)\\p + (c, + c27<)||ä; (7 - ß)|| = p ,

another contradiction. By the invariance under homotopy property of the Leray-

Schauder degree, there exists uefi such that

u = M(u,\)GC.
<

The result follows from the fact that fixed points of P + JQN + K(I - Q)N

are solutions of Lu = Nu.

Remarks. 1. When c2 = 0, our result implies that of Nieto [20] which in turns

generalizes results in [6, 24].

2. Our theorem is a partial extension of a result by Cesari and Kannan [3,

Corollary 3] where C = A is a Hubert space, \[Nu\\ < c, +c2||«|| with k > 1

and c, is sufficiently small.

3. Similar results have been obtained by Gaines and Mawhin [8, Chapter VII]

and Kannan and V. Lakshmikantham [ 13] when C — X.

4. The results in [9, 19, 22] do not assume (explicitly) any growth condition on

the nonlinearity. However, they require the evaluation of a Brouwer degree.

5. The inequality (2) can be reversed by replacing J by -J (in (hi)).

6. If kerL = {0} it follows that P = Q = 0 and Theorem 1 reduces to

Corollary 2. Suppose that kerL = {0}, KQN(C) c C and there exist constants

c, > 0 and c2>0 with c2 < ||7i"0||_   such that

\\Nu\[ < c. + c2[[u[\II-    1 211

for all ugC . Then Lu- Nu has a solution in C.

This Corollary, which will be useful in the next section, is an extension of

the classical Granas fixed point theorem.
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Corollary 3 (Granas [11]). If N: X —► X is a completely continuous mapping in

a Banach space X and there exist two constants c, > 0 and 0 < c2 < 1 such

that [\Nu[\ < cx + c2||w||, for all ugX , then N has at least one fixed point.

Proof. Take A = Z , L = 7 and C = X in Corollary 2.

The techniques in the proof of Theorem 1 may be used to obtain a version

of Corollary 2 without the same growth condition on the nonlinearity.

Proposition 4. Let kerL = {0} and suppose there exists p > 0 such that

(i) \\K0Nu\\ < p

for all ugC with \\u\\ = p,

(ii) K0Nyu G C

for all u G X with \\u\\ < p. Then Lu = Nu has a solution u in C with

\\u\\ < p.

Proof. Consider the homotopy M(u ,k) = kKQNyu, k G [0 ,1] and ||«|| < p .

Suppose

u - kKnNyu0      '

for some k G (0 ,1) and some ugX with ||u|| = p . We have

P = IMI < A||7C0Am|| <kp < p ,

a contradiction. The result follows from the Leray-Schauder continuation the-

orem.

Note that Proposition 4 reduces to Rothe's fixed point theorem [21] when

X = Z, L = I and C = X. For another extension of Rothe's fixed point

theorem, via degree theory, the reader is referred to [18]. Granas' theorem has

also been extended in [1].

Examples. We shall apply Theorem 1 to obtain nonnegative solutions to

(3) u" = f(x,u) = 0,    a.e. on 7 = [0,1],

u(0)-u(l) = u(0)-u'(l) = 0

where f:I x R —» R satisfies the Caratheodory condition; i.e. f(x , •) is con-

tinuous for a.e. x G I and /(•, u) is (Lebesgue) measurable for each ueR.

We shall assume that / has at most linear growth; i.e. there exist c, G L (I)

and c2 > 0 such that

(4) [f(x,u)[<c¿x) + c2[u[

for a.e. x G I and all u g R.

Let X = Z = L2(I) with the usual norm. Define domL = {w:[0,l]-»R;

u ,u are absolutely continuous, u" G L2(I) and u(0) - u(\) = u'(0) - u'(\) =

0}, Lu = -u" . Thus L is a Fredholm operator of index zero with

kerL = (1)
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and compact generalized inverse K : im L —► dorn Lnker P (given below), where

the orthogonal projection P:X —► kerL is given by

• i

XGl.(Pu)(x) — /   u(s)ds ,
Jo

The operator

N:L2^L2, u - -/(.,«(•)),

is L-compact on bounded subsets of L2(7) and problem (3) is equivalent to

Lu = Nu. Our task is to show that this equation has a solution in C - {u G

L2(I):u(x) >0 a.e. on 7}.

Theorem 5. Suppose that f has at most linear growth and there exist constants

a G (0,8], a , b > 0 such that

(5) -a + bu < f(x ,u) <au

for a.e. x G I and all w > 0, then (3) has a nonnegative solution.

Proof. It can be shown that for each z g L (I)

00   fh      /"'

Kp(I - Q)z = Kp(I -P)z = J2yJ0  ^x)<t>k(x)dx ,

where

k. = 4n k  ,       k — 1,2 ,"k

are the eigenvalues of L with corresponding eigenfunctions cpk . Thus

\\K(I-P)\\=sup± = ±- = -±j
y k>\ Ák       A\        4*

and condition (i) of Theorem 1 is fulfilled with cx— a and c2 — a.

Let ß > 0 (to be determined below). If we define the bilinear form ( , ) by

(u,z) = ß /   u(x)z(x)dx ,

then we may take J - ßl where 7 is the identity mapping, and condition (ii)

is obtained from the first inequality in (5), as follows. Let u(x) > 0 a.e. on

7 , u(x) = R + ux(x), where 7? = a/b and

u.(x)dx = 0./   u.(x)dx =
Jo

Then,

(PNu,u0) = -ßR f f(x,u(x))dx<-ßR(a-b í u(x)d

For each z g im L,
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where

and

where
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•1

'0
(Kpz)(x) = j G(s ,x)z(s)ds ,

„, 1 ( s(s + 1 - 2x), 0 < 5 < X < 1 ,
g(j ,x) = ■=<

2\ (l-s)(2x-s), 0<x<s<l,

(Kp(I - P)z)(x) = j G2(s ,x)z(s)ds ,

C72(5,x)= .

5    + S - 2SX       X X 1 rt   . . ,-2-+ T-2 + Ï2' 0£*<*£1

í   - Is - 25X      X        X        1 -  „      _     ^ ,-2-+ T+2+T2' O^^1

Define y:L2(7)^C by

(yu)(x) = \u(x)[,

and let us denote (yu)(x) = yu(x).

Pyu(x) + JQNyu(x) + K(I - Q)Nyu(x)

= / yu(s)ds-ß [ f(s,yu(s))ds
Jo Jo

- /   G2(s ,x)f(s ,yu(s)ds
Jo

= / yu(s)ds+ f [-ß-G2(s,x))f(s,yu(s))ds.
Jo Jo

Taking ß — ̂  it can be shown that -| < -ß - G2(s ,x) < 0. From the

• i

second inequality in (5) we have,

Pyu(x) + JQNyu(x) + Kp(I - Q)Nyu(x) >(\^j\j yu(s)ds > 0.

Thus, condition (iii) of Theorem 1 is fulfilled and the proof is complete.

The operator L associated to problem (3) admits a decomposition of the

form TT* where T and its adjoint T* are the differential operators given by

domr={K€//(/):w(0) = M(l)},       Tu = u

and

domr* = {we77'(7):w(0) = w(l)},        T*u = -u .

T* is a Fredholm operator of index zero with

kerT* = (1)
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and compact generalized inverse K*p (given below), where P is the orthogo-

nal projector considered above. N is T* -compact and the problem of finding

nonnegative solutions to

(6) u=f(x,u),    u(0) = u(l)

is equivalent to solving the equation Tu — Nu in C.

Theorem 6. Suppose that f has at most linear growth and there exist constants

a > 0 and be (0,1] such that

(7) -a + bu<f(x,u)<u

for a.e. x el and all u>0. Then (6) has a nonnegative solution.

Proof. It follows from a result by Kannan and Locker [14, p. 70] that

\k;(i-p)\\ = J[[kp(i-p)\\ =
1

2tt'
Thus, (i) of Theorem 1 is fulfilled with c, = a and c2 = 1.  Condition (ii)

follows as in the proof of Theorem 5.

It can be shown that for each z e im L,
• i

(K*z)(x)= f G(s,x)z(s)ds,
Jo

~ r -(5+1), 0<*<x<l,
G(s ,x) - <

I -s, 0<x<s<l.

(K*p(l - P)z)(x) = j Gi(s,x)z(s)ds,

f X-S- A, 0 < S <X < 1
G,(s,x) = \ 21 U-Í+J, 0<X<5<1

Using the retraction y defined above, we obtain

Pyu(x) + JQNyu(x) + K*p(I - Q)Nyu(x)
-1 /•!

where

and

where

= / yu(s)ds-ß f f(s,yu(s))ds
Jo Jo

j   Gl(s,x)f(s,yu(s))ds

= f yu(s)ds+ [ [-ß-G^s.xnAs.y^sVds.
Jo Jo

- /   (j^s ,x)j(s ,yu(s))ds
Jo

If ß = j it follows that -1 < — 0 — G{(s ,x)< Ö and, assumption (iii) of

Theorem 1 follows from the second inequality in (7) and the proof is complete.

According to our abstract result the nonnegative solutions to (3) and (6) are

bounded in the L -norm. For instance, a solution u given by Theorem 5

satisfies [u[2<(a + aab    )/(4n  -a) + a/b.
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Finally we shall mention that coincidence degree has been used by Gaines

and Santanilla [9] and the author [22, 23] to obtain nonnegative periodic solu-

tions to systems of first and second order ordinary differential equations when

the nonlinearity is continuous. In contrast to the results presented here, the

arguments to obtain a priori bounds in those papers heavily depend upon the

continuity of / on the first variable. For additional results on the subject, we

mention the references in [9, 12, 17, 22, 23].

Finally we shall obtain nonnegative solutions to

(7) u" -I- f(x , u) - 0 ,    a.e. on [0 , n]

u(0) = u(n) = 0

where f: [0, n] x R —► R is a Carathéodory function having at most linear

growth. We have

Theorem 7. Suppose there exist constants cx > 0 and 0 < c2 < 1 such that

(8) 0</(x,m) <c, +c2u

for a.e. x e [0 , n] and all u>0. Then (7) has a nonnegative solution.

Proof. With obvious modifications, we use the notation associated to problem

(3) with Nu = /(•,«(•)) an<l apply Corollary 2. Clearly kerL = {0} and the

inverse K0 of L , Lu = -u" , is given by

(7c-0z)(x)= f  G(x,s)z(s)ds,
Jo

where
1 f (n - s)x , 0 < x < s < n ,

G(x ,s) = — <
it \ (n - x)s , 0<s<x<7t.

The first nonzero eigenvalue of -u" - ku = 0 , u(0) = u(n) = 0 is A, = 1.

Thus, [[KQ[[ = 1/A, = 1. The result follows from Corollary 2.

When the nonlinearity f is at least continuous, nonnegative solutions to (7)

have been studied in [2, 10, 12, 17, 22, 23].
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