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ABSTRACT. A coincidence degree result is established to study sufficient con-
ditions for the existence of nonnegative solutions of a semilinear equation at
resonance in which the nonlinearity has at most linear growth. Nonnegative so-
lutions to some boundary value problems are obtained to illustrate the theory.

The problem of existence of solutions in a convex set, or nonnegative solu-
tions, for abstract semilinear equations at resonance has been recently consid-
ered by Nieto [20], Gaines and Santanilla [9], Mawhin and Rybakowski [19],
and Santanilla [22]. They have considered the problem of existence of solutions
to

(1) Lu= Nu

in a convex set, where L:dom L C X — Z is a Fredholm operator of index zero,
N:X — Z is not necessarily linear and satisfies a compactness property relative
to L,and X ,Z are real Banach spaces. Using the alternative method, Nieto
[20] introduced sufficient conditions for the existence of solutions to Equation
(1) in a cone, when the nonlinearity N is bounded. In this paper we shall use
coincidence degree [8, 18] to present an extension of Nieto’s result when N
grows linearly and C is a wedge. Our result implies the Granas fixed point
theorem and some results of Cesari and Kannan [3, 6] which have been exten-
sively used in differential equations [3, 4, S, 7, 15, 16]. We shall also apply our
abstract results to discuss the existence of nonnegative solutions to some bound-
ary value problems when the nonlinearity is a Carathéodory function and has
at most linear growth.

Notation and Definitions. Throughout this paper we shall assume that L is a
linear Fredholm operator of index zero; i.e. the image of L, im L, is closed
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in Z and dim(ker L) = codim(im L) < oo. It follows from standard results
of linear functional analysis that there exist continuous projectors P: X — X
and Q:Z — Z such that imP = kerL and kerQ = imL. We denote by
K, im L — dom L Nnker P the partial inverse of L and by J an isomorphism
from im Q onto ker L. We assume that 0 < ||Kp(I - Q)| < o0.

Let Q C X be an open bounded subset of X . We assume that N:Q — Z is
L-compact on Q;ie. QN:Q— Z and K,(I - Q)N:Q — X are compact on

Q. The reader is referred to [8, 18] for a complete discussion of coincidence
degree.
Suppose there exists a continuous bilinear form on Z x X

(z,x)—(z,x)

such that
z€imL if and only if (z,u;) =0
for every u, € ker L. Thus, if {v, ,v,,...,v,} is a basis of ker L, then
J:imQ — ker L
n
Z— Z(z , V)Y,
i=1

is an isomorphism and (J "'uo sUug) >0 if uy #0.

Finally, C will denote a wedge in X ; i.e. C is a nonempty closed convex
subset of X such that aC c C for all o« > 0. We shall assume that there
exists a continuous retraction y: X — C of C, mapping bounded sets into
bounded sets.

Theorem 1. Assume that the following conditions are satisfied.
(i) There exists constants ¢, >0 and 0 < ¢, <||K,(I - Q)™ such that

INull < ¢; +c,llul

forall ueC.
(ii) There exists R > 0 such that

(2) (ON(uy+u,), ug) <0
forall u=uy+u, €C, where uyekerL, |luy)|=R, u, €kerP, and
]l < p = (e, + R/(IK, (T - QNI —¢y).
(iii) (P+JQN +K (I - Q)N)y(Q) C C, where
Q={u=uy+u €X:|lup]| <R, ||lu,ll < p}.

Then Lu = Nu has at least one solution ue QN C.

Proof. Consider the homotopy
M(u,2)=AMP+JON+K,(I-Q)N)yu, 2€[0,1],uel.
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If u=M(u,A) for some u € 9Q and some 1€ (0,1), then u € C and
u=APu+JQNu+K,(I-Q)N)u.
Thus,
uy=A(Pu+JQNu), u =K, (I-Q)Nu.

If ||ugl| = R and ||u,|| < p, we have
0< (1= "uy, uy) = HONu,uy) <0,

a contradiction.
If ||luyll < R and ||u,|| = p, we obtain

p = llu,ll = AlIK, (I - Q)Nul|
<AlIK, (I - Q)ll(c, + ¢,llul)
<HIK, (I - Q)li(¢, + ¢,R +¢,p)
<G lIK, (1= Qllp + (¢, +&,RIK, I - Q)ll = p,

another contradiction. By the invariance under homotopy property of the Leray-
Schauder degree, there exists u € Q such that

u=Mu,l)eC.

The result follows from the fact that fixed points of P+ JON + K(I — Q)N
are solutions of Lu = Nu.

Remarks. 1. When ¢, = 0, our result implies that of Nieto [20] which in turns
generalizes results in [6, 24].

2. Our theorem is a partial extension of a result by Cesari and Kannan [3,
Corollary 3] where C = X is a Hilbert space, ||Nu|| < ¢, +c2|lu||k with k > 1
and ¢, is sufficiently small.

3. Similar results have been obtained by Gaines and Mawhin [8, Chapter VII]
and Kannan and V. Lakshmikantham [13] when C = X .

4. The results in [9, 19, 22] do not assume (explicitly) any growth condition on
the nonlinearity. However, they require the evaluation of a Brouwer degree.

5. The inequality (2) can be reversed by replacing J by —J (in (iii)).

6. If ker L = {0} it follows that P = Q = 0 and Theorem 1 reduces to

Corollary 2. Suppose that ker L = {0}, K,N(C) C C and there exist constants
¢, >0 and ¢, >0 with ¢, < ||K0||"l such that

INull < ¢ +c,llull

forall ue C. Then Lu= Nu has a solution in C.

This Corollary, which will be useful in the next section, is an extension of
the classical Granas fixed point theorem.




966 JAIRO SANTANILLA

Corollary 3 (Granas [11]). If N: X — X is a completely continuous mapping in
a Banach space X and there exist two constants ¢, > 0 and 0 < ¢, < 1 such
that ||Nu|| < ¢, + c)l|ull, for all we X, then N has at least one fixed point.

Proof. Take X =2, L=1 and C = X in Corollary 2.

The techniques in the proof of Theorem 1 may be used to obtain a version
of Corollary 2 without the same growth condition on the nonlinearity.

Proposition 4. Let ker L = {0} and suppose there exists p > 0 such that

(1) IKoNul| < p
SJorall ue C with ||u||=p,
(i1) K,NyueC

SJor all u e X with ||u|| < p. Then Lu = Nu has a solution u in C with
llull < p.
Proof. Consider the homotopy M (u,A) = AK,Nyu, A€[0,1] and |[u|| < p.
Suppose
u=AiAK,Nyu
for some A€ (0,1) and some u € X with ||u|]| = p. We have
p=lull SAIKNul| <Ap<p,

a contradiction. The result follows from the Leray-Schauder continuation the-
orem.

Note that Proposition 4 reduces to Rothe’s fixed point theorem [21] when
X=2Z, L=1I and C = X. For another extension of Rothe’s fixed point
theorem, via degree theory, the reader is referred to [18]. Granas’ theorem has
also been extended in [1].

Examples. We shall apply Theorem 1 to obtain nonnegative solutions to

(3) u'=f(x,u)=0, ae onl=[0,1],
u(0)—u(l)=u'(0)—u'(1)=0

where f:I x R — R satisfies the Carathéodory condition; i.e. f(x,:) is con-

tinuous for a.e. x € I and f(-,u) is (Lebesgue) measurable for each u € R.

We shall assume that f has at most linear growth; i.e. there exist ¢, € L’ I
and ¢, > 0 such that

4) |f(x,u)] < ¢ (x)+c,lul

forae. xel and all u€R.

Let X =2 = LZ(I) with the usual norm. Define domL = {u:[0,1] — R;
u,u’ are absolutely continuous, u” € L*(I) and u(0) — u(1) = u'(0) — #'(1) =
0}, Lu=—u". Thus L is a Fredholm operator of index zero with

ker L = (1)
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and compact generalized inverse K :im L — dom LNker P (given below), where
the orthogonal projection P: X — ker L is given by

1
(Pu)(x) = / u(s)ds, xel.
0
The operator
N:L* L u——f(,u),

is L-compact on bounded subsets of LZ(I ) and problem (3) is equivalent to
Lu = Nu. Our task is to show that this equation has a solution in C = {u €

LZ(I):u(x) >0 ae. on I}.

Theorem 5. Suppose that f has at most linear growth and there exist constants
a€(0,8], a, b>0 such that

(5) —a+bu< f(x,u)<au

forae xel andall u> 0, then (3) has a nonnegative solution.

Proof. Tt can be shown that for each z € L*(I)
oo ¢ 1
K(I-Q)z=K,(I-P)z= ; Tf/o 2(x)é, (x)dx ,

where
A =4n’k?,  k=1,2,...,

are the eigenvalues of L with corresponding eigenfunctions ¢, . Thus

1 1 1
K(I-P)|=sup—=-+—=—
1K, = Pl =sup 7= = 7= =

and condition (i) of Theorem 1 is fulfilled with ¢, =a and ¢, = a.
Let B > 0 (to be determined below). If we define the bilinear form ( , ) by

1
,2) = B [ ux)z(x)dx,
0
then we may take J = BI where I is the identity mapping, and condition (ii)

is obtained from the first inequality in (5), as follows. Let u(x) > 0 a.e. on
I, u(x)=R+u/ (x), where R=a/b and

1
/ u (x)dx=0.
0
Then,

(PNu,uy) = ——BR/Olf(x ,u(x))dx < —BR(a —b/ol u(x)dx) =0.

For each zeimL,
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1
(K,2)x) = [ 65, x)z(s)ds

where
s(s+1-2x), 0<s<x<1l,
G(s,x)= {
2l (1-5)2x-5), 0<x<s<l,
and 1
(Kp(I - P)z)(x) = / G,(s,x)z(s)ds,
0
where
2
sHs-tx x X 1 pcs<xc<t,
G _ 2 2 2 12
2(S,x) 2 2
Sols-2sx X Xl gcex<s<t
2 2 2 12° -

Define y: L*(I) —» C by
(ru)(x) = [u(x)l,
and let us denote (yu)(x) =7y, (x).
Py, (x) +JQNy,(x) + K, (I - Q)Ny,(x)

/ ds—ﬁ/fs 7,(8))ds

/ G,(s,x)f(s,y,(s)ds
- / y, (5)ds + / [=8 - G,(s . )1 (5 ,7,(5))ds
0 0

Taking B = 3 it can be shown that —} < —8 — G,(s,x) < 0. From the
second inequality in (5) we have,

1
Py, () + IOV () + K (1= QN0 2 (1-5) [ 2005 2 0.

Thus, condition (iii) of Theorem 1 is fulfilled and the proof is complete.
The operator L associated to problem (3) admits a decomposition of the
form TT" where T and its adjoint T" are the differential operators given by

’

domT ={ue H (I):u(0)=u(l)}, Tu=u

and
li

domT" ={ue H'(:u(0)=u(1)}, Tu=-u.

T* is a Fredholm operator of index zero with

kerT" = (1)
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and compact generalized inverse K; (given below), where P is the orthogo-
nal projector considered above. N is T"-compact and the problem of finding
nonnegative solutions to

(6) u'=f(x,u), u0)=ul)
is equivalent to solving the equation T"u = Nu in C.

Theorem 6. Suppose that f has at most linear growth and there exist constants
a>0 and b e (0,1) such that

(7) —a+bu< f(x,u)<u
forae xe€l andall u>0. Then (6) has a nonnegative solution.
Proof. Tt follows from a result by Kannan and Locker [14, p. 70] that

. 1
1K, (I =PIl =/IIK,(I = P)l| = 5.

Thus, (i) of Theorem 1 is fulfilled with ¢, = a and ¢, = 1. Condition (ii)
follows as in the proof of Theorem 5.
It can be shown that for each z€eimL,

* ! o4
(K;2)) = [ G(s,0)2(s)ds,

where ( 1 0 < <
~ —(s+1), <s<x<1,
Gis.x) = { $<x
-5, 0<x<s<1,
and |
(K, (I - P)z)(x) =/O G,(s,x)z(s)ds,
where
x-s—-14, 0<s<x<l,
G/(s,x)= "
xX-s+1, 0<x<s<l.

Using the retraction y defined above, we obtain
Py, (x) + JONy,(x) + K, (I - Q)N7,(x)

1 1
= / }'u(S)dS - ﬂ/ f(S ,yu(S))ds
0 0
1
—/0 G (s,x)f(s,,(s))ds

1 1
- / y,(s)ds + / [-8 — G, (s, x)1f(5,7,(5))ds.
0 0

If g =1 it follows that -1 < -8 — G,(s,x) < 0 and, assumption (iii) of
Theorem 1 follows from the second inequality in (7) and the proof is complete.

According to our abstract result the nonnegative solutions to (3) and (6) are
bounded in the L’-norm. For instance, a solution u given by Theorem 5
satisfies |u|, < (a+ aab_l)/(47t2 —a)+a/b.
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Finally we shall mention that coincidence degree has been used by Gaines
and Santanilla [9] and the author [22, 23] to obtain nonnegative periodic solu-
tions to systems of first and second order ordinary differential equations when
the nonlinearity is continuous. In contrast to the results presented here, the
arguments to obtain a priori bounds in those papers heavily depend upon the
continuity of f on the first variable. For additional results on the subject, we
mention the references in [9, 12, 17, 22, 23].

Finally we shall obtain nonnegative solutions to

(N '+ f(x,u)=0, ae. onl0,n]
u(0)=u(m)=0

where f:[0,7] x R — R is a Carathéodory function having at most linear
growth. We have

Theorem 7. Suppose there exist constants ¢, >0 and 0 <c, <1 such that

(8) 0< f(x,u)<c +c,u

forae x€[0,n) andall u> 0. Then (7) has a nonnegative solution.

Proof. With obvious modifications, we use the notation associated to problem

(3) with Nu = f(-,u(-)) and apply Corollary 2. Clearly ker L = {0} and the
inverse K, of L, Lu = —u", is given by

(Kyz)(x) = /0 G(x,s)z(s)ds ,

where

G(x,s)= 1

{(n—s)x, 0<x<s<m,
n

(mr—x)s, 0<s<x<m.

The first nonzero eigenvalue of —u" — Au = 0,u(0) = u(z) = 0 is A =1
Thus, [|K|| = 1/4, = 1. The result follows from Corollary 2.

When the nonlinearity f is at least continuous, nonnegative solutions to (7)
have been studied in [2, 10, 12, 17, 22, 23].
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