ULTRAPRODUCTS, ε -MULTIPLIERS, AND ISOMORPHISMS

MICHAEL CAMBERN AND KRZYSZTOF JAROSZ

(Communicated by John B. Conway)

ABSTRACT. For a compact Hausdorff space X and Banach dual E^* , denote by $C(X,(E^*,\sigma^*))$ the Banach space of all continuous functions on X to E^* when the latter space is provided with its weak* topology. We show that if E_i^* , i=1,2, belong to a class of Banach duals satisfying a condition involving the space of multipliers on E_i^* , then the existence of an isomorphism T mapping $C(X_1,(E_1^*,\sigma^*))$ onto $C(X_2,(E_2^*,\sigma^*))$ with $\|T\|\|T^{-1}\|$ small implies that X_1 and X_2 are homeomorphic. Ultraproducts of Banach spaces and the notion of ε -multipliers play key roles in obtaining this result.

1. Introduction

It has long been known that the conclusion of the classical Banach-Stone theorem regarding the topological invariance of the compact Hausdorff space X under isometries of the space C(X) remains valid when isometries are replaced by small-bound isomorphisms [1, 9, 10]. Isometric Banach-Stone theorems for the space C(X, E), consisting of norm-continuous vector functions on X to a Banach space E, were initiated by Jerison [24] and studied by many authors. These results were compiled in the book by Behrends [4], and much more recently have found a formulation valid for isomorphisms [7, 22, 23]. In this article we consider spaces of weak* continuous vector functions. Theorems concerning isometries of such spaces were obtained in [15]. Here we show that an isomorphic result is also possible.

If E^* is a Banach dual we denote by $C(X, (E^*, \sigma^*))$ the space of all continuous functions F on X to E^* when the latter space is provided with its weak* topology, normed by $\|F\|_{\infty} = \sup_{x \in X} \|F(x)\|$. This space arises quite naturally within a variety of mathematical contexts. In [12] it is shown that the characterization of the bidual of C(X) originally obtained by Kakutani [25], and studied by Arens [2] and Kaplan [26], can be formulated for spaces of norm-continuous vector functions via the introduction of $C(X, (E^*, \sigma^*))$. The dual of the Bochner space $L^1(\mu, E)$ is always of the form $C(X, (E^*, \sigma^*))$ [13, Remark] (whereas $L^{\infty}(\mu, E^*)$ fulfills this role only with an assumption regarding the Radon-Nikodyn property [16, p. 98]). $C(X, (E^*, \sigma^*))$ provides

Received by the editors August 26, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 46E40, 46B20, 46E15.

the dual of a space of vector measures [13] in a manner which parallels the duality obtained for spaces of scalar measures by Gordon [19]. And the results of Dixmier and Grothendieck [17, 20] characterizing those spaces C(X) which are Banach duals have vector analogues which involve $C(X, (E^*, \sigma^*))$ [14].

We will show that given compact Hausdorff spaces X_1 , X_2 and Banach duals E_1^* , E_2^* which satisfy a geometric condition, then the existence of an isomorphism S mapping $C(X_1,(E_1^*,\sigma^*))$ onto $C(X_2,(E_2^*,\sigma^*))$ with $\|S\| \|S^{-1}\|$ small implies that X_1 and X_2 are homeomorphic. The only result of this nature known to the authors is found in [11], where it is assumed that the X_i are extremally disconnected and the E_i^* uniformly convex. Here we remove the assumption concerning the extremally disconnected nature of the X_i , and the geometric condition we impose is much less restrictive than the requirement of uniform convexity.

Our results depend heavily upon the concept of a multiplier on a Banach space E. (For the definition and properties of multipliers we refer to [4].) The space of multipliers on E is denoted by $\operatorname{Mult}(E)$, while $\mathscr{B}(E)$ stands for the space of all bounded operators on E. Here we employ the notion of ε -multipliers which, for each $\varepsilon > 0$, constitute a subset $\operatorname{Mult}_{\varepsilon}(E)$ of $\mathscr{B}(E)$ containing the unit ball in $\operatorname{Mult}(E)$. (Our use of the notation $\operatorname{Mult}_{\varepsilon}(E)$ can be seen to agree with that of [7].) The geometric condition which will be imposed on dual spaces is essentially that, as ε tends to 0, $\operatorname{Mult}_{\varepsilon}(E)$ comes ever closer to a trivial set of multipliers consisting of scalar multiples of the identity operator. In this case the unit ball of $\operatorname{Mult}(E)$, which is the intersection over all $\varepsilon > 0$ of $\operatorname{Mult}_{\varepsilon}(E)$, consists only of scalar multiples of the identity, and $\operatorname{Mult}(E)$ will be called geneologically trivial.

Our arguments are also much dependent upon the notion of an ultraproduct of Banach spaces. Here we follow the notation and terminology of [21], except that for us any ultrafilter $\mathscr F$ considered is invariably a free ultrafilter on the set $\mathbb N$ of natural numbers. Thus the ultraproduct $(E_n)_{\mathscr F}$ of a family of Banach spaces $(E_n)_{n\in\mathbb N}$ is the quotient space $l^\infty(\mathbb N,E_n)/N_{\mathscr F}$, where $N_{\mathscr F}$ is the subspace consisting of those elements $(e_n)\in l^\infty(\mathbb N,E_n)$ with $\lim_{\mathscr F}\|e_n\|=0$. Here $(e_n)_{\mathscr F}$ denotes the equivalence class of (e_n) in $(E_n)_{\mathscr F}$ and $\|(e_n)_{\mathscr F}\|=\lim_{\mathscr F}\|e_n\|$, [21, p. 75]. If all E_n are equal to some fixed Banach space E, the ultraproduct is called an ultrapower, denoted by $(E)_{\mathscr F}$. And given operators $T_n\in\mathscr B(E_n)$ with $\sup_n\|T_n\|<\infty$, the operator on $(E_n)_{\mathscr F}$ defined by $(e_n)_{\mathscr F}\to (T_ne_n)_{\mathscr F}$ is called the ultraproduct of the family $(T_n)_{n\in\mathbb N}$ and is denoted by $(T_n)_{\mathscr F}$. Moreover $\|(T_n)_{\mathscr F}\|=\lim_{\mathscr F}\|T_n\|$.

Finally, throughout the article, if we are given any Banach space E the associated scalar field will be denoted by K. Thus $K = \mathbb{R}$ or \mathbb{C} .

2. ε -multipliers

Definition 1. Given $\varepsilon > 0$ and $T \in \mathcal{B}(E)$ we call T an ε -multiplier if for any e_1 , $e_2 \in E$ and r > 0, then $||e_1 - \lambda e_2|| \le r$ for all $\lambda \in K$ with $|\lambda| \le 1$

implies that $||e_1 - Te_2|| \le r(1+\varepsilon)$. The set of all ε -multipliers on E is denoted $\mathrm{Mult}_{\varepsilon}(E)$.

Obviously any multiplier T on E of norm not greater than 1 is an ε -multiplier for all $\varepsilon > 0$, [4, proof of Theorem 3.3]. Also, any ε -multiplier has norm not greater than $1 + \varepsilon$. We shall need the following simple propositions.

Proposition 1. If S and T are ε -multipliers, then so are -T and (S+T)/2. Proof. The result for -T is obvious. Thus suppose that $||e_1 - \lambda e_2|| \le r$ for all $|\lambda| \le 1$. We have

$$||e_1 - [(S+T)/2]e_2|| \le \frac{1}{2}||e_1 - Se_2|| + \frac{1}{2}||e_1 - Te_2|| \le 2 \cdot \frac{1}{2}r(1+\varepsilon)$$
, so that $(S+T)/2$ is an ε -multiplier.

We note, for future reference, that if T is an ε_0 -multiplier then it is an ε -multiplier for any $\varepsilon > \varepsilon_0$.

Proposition 2. Let S be an isomorphism of E_1 onto E_2 with $\|S\| \le 1 + \tau$ and $\|S^{-1}\| \le 1 + \tau$ for some $\tau > 0$, and let ε be defined by $1 + \varepsilon = (1 + \tau)^2$. If T is a multiplier on E_1 with $\|T\| \le 1$ and if $\hat{T} := STS^{-1}$ then \hat{T} is an ε -multiplier on E_2 .

Proof. Given $e_1, e_2 \in E_2$ suppose that $\|e_1 - \lambda e_2\| \le r$ for all $\lambda \in K$ with $|\lambda| \le \|T\|$. Then $\|S^{-1}e_1 - \lambda S^{-1}e_2\| \le r(1+\tau)$ so that, since T is a multiplier, $\|S^{-1}e_1 - TS^{-1}e_2\| \le r(1+\tau)$. Hence $\|e_1 - \hat{T}e_2\| = \|SS^{-1}e_1 - STS^{-1}e_2\| \le r(1+\tau)^2 = r(1+\varepsilon)$.

3. Banach spaces E with Mult(E) geneologically trivial

Definition 2. Given the Banach space E we will say that $\operatorname{Mult}(E)$ is geneologically trivial if for every $\eta > 0$ there exists an $\varepsilon > 0$, $\varepsilon = \varepsilon(\eta, E)$ such that if $T \in \mathcal{B}(E)$ is an ε -multiplier then there exists $\lambda \in K$ with $||T - \lambda I|| \le \eta$.

Proposition 3. Let E be a Banach space and let \mathscr{F} by any free ultrafilter on the integers. Then $\operatorname{Mult}(E)$ is geneologically trivial if $\operatorname{Mult}((E)_{\mathscr{F}})$ is trivial—i.e. consists only of multiples of the identity operator.

Proof. Suppose that $\operatorname{Mult}((E)_{\mathscr{F}})$ is trivial. If $\operatorname{Mult}(E)$ were not geneologically trivial there would exist an $\eta_0>0$ and a sequence of (1/n)-multipliers $T_n\in\mathscr{B}(E)$ such that for all $\lambda\in\mathbf{K}$, $\|T_n-\lambda I\|>\eta_0$. Then $T:=(T_n)_{\mathscr{F}}$ would be an operator on $(E)_{\mathscr{F}}$ of norm not greater than 1 which is also a multiplier. For suppose that e_n , $v_n\in E$, and $\|(e_n)_{\mathscr{F}}-\lambda(v_n)_{\mathscr{F}}\|=\|(e_n-\lambda v_n)_{\mathscr{F}}\|\leq r$ for all $\lambda\in\mathbf{K}$ with $|\lambda|\leq 1$. Then for each $k=1,2,\ldots$ there exists a set A_k of the filter \mathscr{F} such that if $n\in A_k$ then $\|e_n-\lambda v_n\|\leq r(1+1/k)$ for $|\lambda|\leq 1$ and hence $\|e_n-T_nv_n\|\leq r(1+1/k)(1+1/n)$. It follows that $\|(e_n)_{\mathscr{F}}-T(v_n)_{\mathscr{F}}\|=\lim_{\mathscr{F}}\|e_n-T_nv_n\|\leq r$, which proves our claim concerning T.

Since $\operatorname{Mult}((E)_{\mathscr{T}})$ is trivial, there is a $\lambda \in \mathbb{K}$ such that $(T_n - \lambda I)_{\mathscr{T}} = 0$. But for each n there exists an $e_n \in E$ with $||e_n|| = 1$ and $||(T_n - \lambda I)e_n|| > \eta_0$.

Thus the element $(e_n)_{\mathscr{F}}$ of $(E)_{\mathscr{F}}$ has norm one and $\|(T_n-\lambda I)_{\mathscr{F}}\| \geq \|(T_n-\lambda I)_{\mathscr{F}}(e_n)_{\mathscr{F}}\| = \lim_{\mathscr{F}} \|(T_n-\lambda I)e_n\| \geq \eta_0$, and this contradiction concludes the proof.

Throughout the next section we will be concerned with Banach duals E which are such that $\operatorname{Mult}(E)$ is geneologically trivial. We wish to observe, via the following two propositions, that the class of such spaces is large enough to be interesting.

Proposition 4. If E is a uniformly convex or a uniformly smooth Banach space, then Mult(E) is geneologically trivial.

Proof. In view of Proposition 3 it suffices to show that if E is uniformly convex, (uniformly smooth), then so is $(E)_{\mathscr{F}}$ [4, Proposition 5.1]. This fact is doubtless known. We give the easy proof for uniformly convex spaces. The proof for uniformly smooth spaces is analogous.

Thus suppose that E is uniformly convex. That is, given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that if e, $v\in E$, $\|e\|<1$, $\|v\|<1$ and $\|e-v\|>\varepsilon$ then $\|e+v\|\leq 2-2\delta(\varepsilon)$. Hence assume $\varepsilon>0$ is given and $(e_n)_{\mathscr{F}}$, $(v_n)_{\mathscr{F}}$ are elements of $(E)_{\mathscr{F}}$ with $\|(e_n)_{\mathscr{F}}\|<1$, $\|(v_n)_{\mathscr{F}}\|<1$ and $\|(e_n)_{\mathscr{F}}-(v_n)_{\mathscr{F}}\|>\varepsilon$. Then there is a set A in \mathscr{F} such that for $n\in A$ one has $\|e_n\|<1$, $\|v_n\|<1$, and $\|e_n-v_n\|>\varepsilon$ so that $\|e_n+v_n\|\leq 2-2\delta(\varepsilon)$. Hence $\|(e_n)_{\mathscr{F}}+(v_n)_{\mathscr{F}}\|=\lim_{\mathscr{F}}\|e_n+v_n\|\leq 2-2\delta(\varepsilon)$.

Recall that if $1 \le p < \infty$, an L^p -projection on a Banach space E is a projection $Q: E \to E$ such that

$$||e||^p = ||Qe||^p + ||e - Qe||^p$$

for $e \in E$.

Proposition 5. Let E be a Banach space and let $Q: E \to E$ be a nontrivial L^p -projection for some p with $1 \le p < \infty$. (If p = 1 we assume that $\dim(E) > 2$.) Then $\operatorname{Mult}(E)$ is geneologically trivial.

Proof. Again, by Proposition 3 it suffices to show that $\operatorname{Mult}((E)_{\mathscr{F}})$ is trivial. If we set $Q_n = Q$ for all n then $\hat{Q} := (Q_n)_{\mathscr{F}}$ is a nontrivial L^p -projection on $(E)_{\mathscr{F}}$. Hence [8, p. 10] \hat{Q}^{**} is a nontrivial L^p -projection on $(E)_{\mathscr{F}}^{**}$. If $(E)_{\mathscr{F}}$ were to admit a nontrivial multiplier T, then [5, p. 26] T^{**} would be a nontrivial multiplier on $(E)_{\mathscr{F}}^{**}$ so thay by [4, Theorem 5.9] $(E)_{\mathscr{F}}^{**}$ would admit a nontrivial L^{∞} -projection. But by [3, Theorem 3.5] this is impossible. Hence $\operatorname{Mult}((E)_{\mathscr{F}})$ is trivial and we are done.

4. ISOMORPHISMS OF SPACES OF VECTOR FUNCTIONS

Lemma 1. Let X be a compact Hausdorff space and E^* a Banach dual such that $\operatorname{Mult}(E^*)$ is geneologically trivial. Given $\eta>0$ let $\varepsilon=\varepsilon(\eta,E^*)$ be related to η as in Definition 2. If then $T:C(X,(E^*,\sigma^*))\to C(X,(E^*,\sigma^*))$ is an ε -multiplier there is a $g\in C(X)$ with $\|g\|_{\infty}\leq \|T\|$ such that $\|T(\mathbf{e}^*)-g\cdot e^*\|_{\infty}\leq 2\eta\|e^*\|$ for all $e^*\in E^*$.

Proof. Fix $x \in X$. We know that if e_1^* , $e_2^* \in E^*$ and if $||e_1^* - \lambda e_2^*|| \le r$ for all $\lambda \in \mathbf{K}$, $|\lambda| \le 1$ then

$$\|\mathbf{e}_{1}^{*} - \lambda \mathbf{e}_{2}^{*}\|_{\infty} \le r$$
 for such λ so that $\|\mathbf{e}_{1}^{*} - T(\mathbf{e}_{2}^{*})\|_{\infty} \le r(1 + \varepsilon)$.

Define $S_x: E^* \to E^*$ by $S_x(e^*) = (T(\mathbf{e}^*))(x)$. Thus if $e_1^*, e_3^* \in E^*$ and $\|e_1^* - \lambda e_2^*\| \le r$ for all $|\lambda| \le 1$ we have

$$\begin{split} \|\boldsymbol{e}_{1}^{*} - S_{x}(\boldsymbol{e}_{2}^{*})\| &= \|\mathbf{e}_{1}^{*}(x) - (T(\mathbf{e}_{2}^{*}))(x)\| \\ &\leq \|\mathbf{e}_{1}^{*} - T(\mathbf{e}_{2}^{*})\|_{\infty} \leq r(1 + \varepsilon) \end{split}$$

so that S_x is indeed an ε -multiplier on E^* and, obviously, $\|S_x\| \le \|T\|$. By Definition 2 there exists a $\lambda_x \in \mathbf{K}$ such that

(1)
$$||S_x(e^*) - \lambda_x e^*|| = ||(T(\mathbf{e}^*))(x) - \lambda_x e^*|| \le \eta ||e^*||$$

for $e^* \in E^*$. Thus fix an $e_0 \in E$ (the predual of E^*) with $\|e_0\| = 1$ and take an $e_0^* \in E^*$ with $\|e_0^*\| = 1$ such that $\langle e_0^-, e_0^* \rangle = 1$. We have

$$|\langle e_0, (T(\mathbf{e}_0^*))(x)\rangle - \lambda_x| = |\langle e_0, (T(\mathbf{e}_0^*))(x)\rangle - \lambda_x \langle e_0, e_0^*\rangle| \le \eta.$$

Hence, for every $e^* \in E^*$,

(2)
$$\|\langle e_0, (T(\mathbf{e}_0^*))(x)\rangle e^* - \lambda_x e^* \| \le \eta \|e^*\|.$$

Thus if $e^* \in E^*$ we have

$$\begin{split} &\|(T(\mathbf{e}^*))(x) - \langle e_0, (T(\mathbf{e}_0^*))(x) \rangle e^*\| \\ &\leq \|(T(\mathbf{e}^*))(x) - \lambda_x e^*\| + \|\lambda_x e^* - \langle e_0, (T(\mathbf{e}_0^*))(x) e^* \rangle e^*\| \\ &\stackrel{(1),(2)}{\leq} 2\eta \|e^*\| \end{split}$$

so that, if we set $g := \langle e_0, (T(\mathbf{e}^*))(\cdot) \rangle$, the proof of the lemma is complete.

Lemma 2. Let $\eta>0$ be given and let E be any Banach space. Then there exists an $\varepsilon>0$, $\varepsilon=\varepsilon(\eta)$, such that if $T:E\to E$ is an ε -multiplier, if $u_0\in E$, $\|u_0\|\leq 1$ with $\|Tu_0\|\leq \varepsilon$, and if $v_0=Tv_1$ where $v_1\in E$, $\|v_1\|\leq 1$ then

$$||u_0 + v_0|| \le 1 + \eta$$
.

Proof. If the theorem were false then there would exist a number $\eta_0 > 0$, a sequence $\{E_n\}$ of Banach spaces, a sequence $\{T_n\}$ of (1/n)-multipliers, $T_n: E_n \to E_n$, and two sequences $\{u_n\}$, $\{v_n'\}$ with $u_n, v_n' \in E_n$ for all n, $\|u_n\| \le 1$, $\|Tu_n\| \le 1/n$, $\|v_n'\| \le 1$ such that if $v_n = T_n v_n'$ then

$$||u_n + v_n|| > 1 + \eta_0$$
.

Let T be the map from $(E_n)_{\mathscr{T}}$ to itself given by $T:=(T_n)_{\mathscr{T}}$. Set $u:=(u_n)_{\mathscr{T}}$ and $v':=(v'_n)_{\mathscr{T}}$. We have $\|u\|\leq 1$, Tu=0, $\|v'\|\leq 1$ and

$$||u + Tv'|| \ge 1 + \eta_0 > 1$$
.

But T is a multiplier (by the same argument as that used in the proof of Proposition 3) with $||T|| = \lim_{\mathscr{F}} ||T_n|| \le \lim_{\mathscr{F}} (1 + 1/n) = 1$ and by [6, Lemma 2.2] we have

$$||u + v|| = \max\{||u||, ||v||\}$$

for u in the kernel of T and v in the range of T. This contradiction concludes the proof of the lemma.

We note that the proof of Lemma 1 shows that there exists a map which associates with each ε -multiplier T on a space $C(X,(E^*,\sigma^*))$, with $\operatorname{Mult}(E^*)$ geneologically trivial, a function $g\in C(X)$ with $\|g\|_{\infty}\leq \|T\|$. We denote this correspondence by writing $g=\rho(T)$. This definition of ρ and the proof of Lemma 1 show that if I is the identity operator on $C(X,(E^*,\sigma^*))$ then $\rho(I)=1$. Note that if T_1 , T_2 and αT_1+T_2 all belong to $\operatorname{Mult}_{\varepsilon}(C(X,(E^*,\sigma^*)))$ for some $\alpha\in \mathbf{K}$ then $\rho(\alpha T_1+T_2)=\alpha\rho(T_1)+\rho(T_2)$.

Moreover, given $g \in C(X)$, we will denote by M_g that operator on $C(X,(E^*,\sigma^*))$ which is multiplication by g. Obviously $\|M_g\| = \|g\|_{\infty}$. Since $\operatorname{Mult}(E^*)$ is geneologically trivial, hence trivial, it follows from [6, Theorem 2.4] and [18, p. 490] that $\operatorname{Mult}(C(X,(E^*,\sigma^*)))$ is precisely the set $\{M_g:g\in C(X)\}$.

Proposition 6. If $T \in \text{Mult}(E)$ and $||T|| \leq 1 + \varepsilon$ then T is an ε -multiplier on E.

Proof. Suppose that e_1 , $e_2 \in E$ and r > 0 are such that for all scalars λ with $|\lambda| \le 1$ we have $||e_1 - \lambda e_2|| \le r$. Then by setting $\lambda = \pm 1$ and using the triangle inequality we have $||e_2|| \le r$. Since $T \in \operatorname{Mult}(E)$ we have $T/(1+\varepsilon) \in \operatorname{Mult}(E)$ and $||T/(1+\varepsilon)|| \le 1$ so that

$$\begin{split} \|e_1 - Te_2\| &\leq \|e_1 - [T/(1+\varepsilon)]e_2\| + \|e_2\| \, \|T\|[1-1/(1+\varepsilon)] \\ &\leq r + r(1+\varepsilon)[1-1/(1+\varepsilon)] = r(1+\varepsilon) \,. \end{split}$$

Lemma 3. Let X be a compact Hausdorff space and let E^* be a Banach dual with $\operatorname{Mult}(E^*)$ geneologically trivial. Let η be a given positive number. Let ε_1 denote the $\varepsilon(\eta, E^*)$ of Definition 2 and let ε_2 denote the $\varepsilon(\eta)$ of Lemma 2. Set $\varepsilon_0 = \varepsilon_0(\eta, E^*) := \min\{\varepsilon_2(\eta), \varepsilon_1(\varepsilon_2(\eta), E^*)\}$. Then if T is an ε_0 -multiplier on $C(X, (E^*, \sigma^*))$ we have

$$||T-M_{\rho(T)}||\leq 2\eta.$$

Proof. Let T be a nonzero ε_0 -multiplier. Set

$$\hat{T} := \frac{1}{2}(T - M_{o(T)}).$$

Since T is an $\varepsilon(\varepsilon_2(\eta), E^*)$ -multiplier, by Lemma 1, for any $e^* \in E^*$ we have (3) $\|\hat{T}(e^*)\|_{\infty} \le \varepsilon_2(\eta) \|e^*\|$.

Let F be any element of $C(X, (E^*, \sigma^*))$ with $||F||_{\infty} \le 1$. We have $\sup\{||\hat{T}(F) + e^*||_{\infty} : e^* \in E^*, ||e^*|| \le 1\} = 1 + ||\hat{T}(F)||_{\infty}$.

On the other hand, by Propositions 1 and 6 and our choice of ε_0 , \hat{T} is an $\varepsilon_2(\eta)$ -multiplier so that by (3) and Lemma 2, for any $e^* \in E^*$ with $||e^*|| \le 1$ we have

$$\|\hat{T}(F) + \mathbf{e}^*\|_{\infty} \le 1 + \eta.$$

Hence $\|\hat{T}(F)\|_{\infty} \le \eta$ so that $\|\hat{T}\| \le \eta$ and we are done.

Theorem. Let X_i be compact Hausdorff spaces and E_i^* Banach duals with $\operatorname{Mult}(E_i^*)$ geneologically trivial for i=1,2. Then there is a positive number ε such that the existence of a surjective isomorphism $S:C(X_1,(E_1^*,\sigma^*))\to C(X_2,(E_2^*,\sigma^*))$ with $\|S\| \|S^{-1}\| < 1 + \varepsilon$ implies that X_1 and X_2 are homeomorphic.

Proof. First let η be a real number with $0 < \eta < \frac{1}{6}$ and, for i = 1, 2, choose $\varepsilon_0(\eta, E_i^*)$ as in Lemma 3. Then let ε be a positive number satisfying $\varepsilon \le \min\{\varepsilon_0(\eta, E_1^*), \varepsilon_0(\eta, E_2^*)\}$ and such that

$$(4) (1+\varepsilon)^2(1+2\eta) < \frac{4}{3}.$$

In order to facilitate the arguments that follow it will be desirable to have a symmetric relationship between S and S^{-1} . Thus, defining τ by $(1+\tau)^2=1+\varepsilon$ and replacing S, if necessary, by a suitable scalar multiple we may assume that

$$\frac{1}{1+\tau} \|F\|_{\infty} \le \|SF\|_{\infty} \le (1+\tau) \|F\|_{\infty}$$

for $F \in C(X_1^-, (E_1^*, \sigma^*))$, and consequently that $\|S\| \le 1 + \tau$, $\|S^{-1}\| \le 1 + \tau$. We let ρ be the map from the set of ε -multipliers on $C(X_2^-, (E_2^*, \sigma^*))$ to $C(X_2^-)$ which appears in Lemma 3, and note that if $f \in C(X_1^-)$ and $\|f\|_\infty \le 1$ then, by Proposition 2, $S \circ M_f \circ S^{-1}$ is an ε -multiplier on $C(X_2^-, (E_2^*, \sigma^*))$. We may thus define a map Φ_0 from the unit ball of $C(X_1^-)$ to $C(X_2^-)$ by

$$\Phi_0(f) = \rho(S \circ M_f \circ S^{-1}) \ , \qquad \text{for} \quad f \in C(X_1) \ , \quad \|f\|_\infty \leq 1 \ .$$

If f_1 , f_2 and $\alpha f_1 + f_2$ (some $\alpha \in \mathbf{K}$) are all elements of $C(X_1)$ of norm less than or equal to 1, so that by Proposition 2, $S \circ M_{f_1} \circ S^{-1}$, $S \circ M_{f_2} \circ S^{-1}$, and $S \circ M_{\alpha f_1 + f_2} \circ S^{-1}$ are all ε -multipliers on $C(X_2, (E_2^*, \sigma^*))$ then, as noted following the proof of Lemma 2, $\Phi_0(\alpha f_1 + f_2) = \alpha \Phi_0(f_1) + \Phi_0(f_2)$. Thus given $f \in C(X_1)$, take any $R_1 \geq \|f\|_{\infty}$ and consider $R_1 \cdot \Phi_0(f/R_1)$. If $R_2 > R_1 \geq \|f\|_{\infty}$ then $R_2 = R_1 \cdot R$ for some R > 1 and $R_2 \cdot \Phi_0(f/R_1)$. If $R_1 \cdot R \cdot \Phi_0(f/R_1 \cdot R) = R_1 \cdot R \cdot (1/R) \cdot \Phi_0(f/R_1) = R_1 \cdot \Phi_0(f/R_1)$. Hence if we denote by $\lim_{R \to \infty} R \cdot \Phi_0(f/R)$ the common value of $R_1 \cdot \Phi_0(f/R_1)$ for all $R_1 \geq \|f\|_{\infty}$, then $\Phi(f) := \lim_{R \to \infty} R \cdot \Phi_0(f/R)$ is a linear map from $C(X_1)$ to $C(X_2)$ which agrees with Φ_0 on the unit ball of $C(X_1)$. (Equivalently, $\Phi(f) = \|f\|_{\infty} \Phi_0(f/\|f\|_{\infty})$, for $f \neq 0$.) Now if $0 \neq f \in C(X_1)$ set $f_1 = f/\|f\|_{\infty}$. Then by Lemma 3 $\|S \circ M_f \circ S^{-1} - M_{\Phi(f)}\| \leq 2\eta$ so that

(5)
$$||S \circ M_f \circ S^{-1} - M_{\Phi(f)}|| \le 2\eta ||f||_{\infty}, \quad f \in C(X_1).$$

Hence we have

$$| \| S \circ M_f \circ S^{-1} \| - \| \Phi(f) \|_{\infty} | \le \| S \circ M_f \circ S^{-1} - M_{\Phi(f)} \|$$

$$\le 2\eta \| f \|_{\infty}, \qquad f \in C(X_1),$$

and it is clear that

$$||f||_{\infty}/(1+\varepsilon) < ||S \circ M_f \circ S^{-1}|| \le (1+\varepsilon)||f||_{\infty}$$

for $f \in C(X_1)$. It follows that

$$(6) \quad [1/(1+\varepsilon)-2\eta]\|f\|_{\infty}\leq \|\Phi(f)\|_{\infty}\leq [1+\varepsilon+2\eta]\|f\|_{\infty}\,, \qquad f\in C(X_1)\,.$$

Let Ψ_0 be the corresponding map from the unit ball of $C(X_2)$ to $C(X_1)$ given by $\Psi_0(g)=\rho(S^{-1}\circ M_g\circ S)$ for $g\in C(X_2)$, $\|g\|_\infty\leq 1$. By symmetry we have

(7)
$$||S^{-1} \circ M_g \circ S - M_{\Psi_0(g)}|| \le 2\eta ||g||_{\infty}, \quad ||g||_{\infty} \le 1,$$

and if Ψ corresponds to Ψ_0 as Φ corresponds to Φ_0 , then

$$\|\Psi\| \leq 1 + \varepsilon + 2\eta,$$

and (7) holds with Ψ replacing Ψ_0 for all $g \in C(X_2)$. Thus for any $g \in C(X_2)$ with $\|g\|_{\infty} \le 1$ we have

$$\begin{split} \|\Phi(\Psi(g)) - g\|_{\infty} &= \|M_{\Phi(\Psi(g))} - M_g\| \\ &= \|M_{\Phi(\Psi(g))} - S \circ (S^{-1} \circ M_g \circ S) \circ S^{-1}\| \\ &\leq \|M_{\Phi(\Psi(g))} - S \circ M_{\Psi(g)} \circ S^{-1}\| \\ &+ \|S \circ M_{\Psi(g)} \circ S^{-1} - S \circ (S^{-1} \circ M_g \circ S) \circ S^{-1}\| \\ &\leq 2\eta \|\Psi(g)\|_{\infty} + \|S\|2\eta \|S^{-1}\| \\ &\leq 2\eta [1 + \varepsilon + 2\eta] + 2\eta (1 + \varepsilon)^2 \\ &< 2\eta (1 + \varepsilon)[1 + \varepsilon + 2\eta (1 + \varepsilon)] + 2\eta (1 + \varepsilon)^2 \\ &= 4\eta [1 + \eta](1 + \varepsilon)^2 \,. \end{split}$$

As (4) implies that

$$(9) 2\eta(1+\varepsilon)^2 < \tfrac{1}{3}$$

the condition $\eta < \frac{1}{6}(<\frac{1}{2})$ gives $\|\Phi(\Psi(g)) - g\| < 1$, and thus, by the Riesz lemma, Φ is surjective. And since (9) gives

(10)
$$1 - 2\eta(1+\varepsilon) > 1 - 2\eta(1+\varepsilon)^2 > \frac{2}{3}$$

it now follows from the inequality on the left in (6) that Φ is injective. Thus Φ is an isomorphism mapping $C(X_1)$ onto $C(X_2)$ which, by (6), satisfies

$$\|\Phi\| \|\Phi^{-1}\| \leq \frac{(1+\varepsilon)^2 + 2\eta(1+\varepsilon)}{1 - 2\eta(1+\varepsilon)} < \frac{(1+\varepsilon)^2[1+2\eta]}{1 - 2\eta(1+\varepsilon)^2}.$$

Since by (4) the numerator in this last expression is less than $\frac{4}{3}$ and by (10) the denominator is greater than $\frac{2}{3}$, we have $\|\Phi\| \|\Phi^{-1}\| < 2$ so that X_1 and X_2 are homeomorphic [1, 9, 10].

REFERENCES

- 1. D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205-210.
- 2. R. Arens, Operations induced in function classes, Monatsh. math. 55 (1951), 1-19.
- 3. E. Behrends, Lp-Struktur in Banachräumen, Studia Math. 55 (1976), 71-85.
- 4. ____, M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics 736, Springer-Verlag, Berlin, 1979.
- 5. _____, Normal operators and multipliers on complex Banach spaces and a symmetry property of L¹-predual spaces, Israel J. Math. 47 (1984), 23-28.
- 6. ____, On the geometry of C₀K-valued operators, Studia Math. 90 (1988), 135-151.
- 7. _____, Isomorphic Banach-Stone theorems and isomorphisms which are close to isometries, Pacific J. Math. 133 (1988), 229-250.
- 8. E. Behrends et al., LP-structure in real Banach spaces, Lecture Notes in Mathematics 613, Springer-Verlag, Berlin, 1977.
- M. Cambern, A generalized Banach-Stone theorem, Proc. Amer. Math. Soc. 17 (1966), 396– 400
- 10. _____, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062-1066.
- 11. _____, Near isometries of spaces of weak* continuous functions, with an application to Bochner spaces, Studia Math. 85 (1987), 149-156.
- 12. M. Cambern and P. Greim, The bidual of C(X, E), Proc. Amer. Math. Soc. 85 (1982), 53-58.
- 13. ____, The dual of a space of vector measures, Math. Z. 180 (1982), 373-378.
- 14. ____, Spaces of continuous vector functions as duals, Canad. Math. Bull. 31 (1988), 70-78.
- 15. M. Cambern and K. Jarosz, Isometries of spaces of weak* continuous functions Proc. Amer. Math. Soc. (to appear).
- J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
- 17. J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151-182.
- 18. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- 19. H. Gordon, The maximal ideal space of a ring of measurable functions, Amer. J. Math. 88 (1966), 827-843.
- A. Grothendieck, Une caratérisation vectorielle metrique des espaces L¹, Canad. J. Math. 7 (1955), 552-561.
- 21. S. Heinrich, Ultraproducts in Banach space theory, J. Riene Angew. Math. 313 (1980), 72-104.
- 22. K. Jarosz, A generalization of the Banach-Stone theorem, Studia Math. 73 (1982), 33-39.
- 23. _____, Small isomorphisms of C(X, E) spaces, Pacific J. Math. (to appear).
- 24. M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. (2) 52 (1950), 309-327.
- 25. S. Kakutani, Concrete representations of abstract (M)-spaces, Ann. of Math. (2) 42 (1941), 994-1024.
- S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70-90.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA

DEPARTMENT OF MATHEMATICS AND STATISTICS, SOUTHERN ILLINOIS UNIVERSITY AT EDWARDSVILLE, EDWARDSVILLE, ILLINOIS 62026