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ULTRAPRODUCTS, e-MULTIPLIERS, AND ISOMORPHISMS

MICHAEL CAMBERN AND KRZYSZTOF JAROSZ

(Communicated by John B. Conway)

Abstract. For a compact Hausdorff space X and Banach dual E* , denote

by C(X, (E* ,o*)) the Banach space of all continuous functions on X to E*

when the latter space is provided with its weak* topology. We show that if E* ,

i = 1,2, belong to a class of Banach duals satisfying a condition involving the

space of multipliers on E* , then the existence of an isomorphism T mapping

C(*i,(£*,<7*)) onto C{X2,{E*,o')) with ||r|| || 7—' |l small implies that X,
and Xi are homeomorphic. Ultraproducts of Banach spaces and the notion of

e-multipliers play key roles in obtaining this result.

1. Introduction

It has long been known that the conclusion of the classical Banach-Stone the-

orem regarding the topological invariance of the compact Hausdorff space X

under isometries of the space C(X) remains valid when isometries are replaced

by small-bound isomorphisms [1, 9, 10]. Isometric Banach-Stone theorems for

the space C(X , E), consisting of norm-continuous vector functions on X to

a Banach space E, were initiated by Jerison [24] and studied by many authors.

These results were compiled in the book by Behrends [4], and much more re-

cently have found a formulation valid for isomorphisms [7, 22, 23]. In this

article we consider spaces of weak* continuous vector functions. Theorems

concerning isometries of such spaces were obtained in [15]. Here we show that

an isomorphic result is also possible.

If E* is a Banach dual we denote by C(X , (E* ,o*)) the space of all con-

tinuous functions F on I to E* when the latter space is provided with its

weak* topology, normed by |F||„ = supx€X ||F(x)||. This space arises quite

naturally within a variety of mathematical contexts. In [12] it is shown that

the characterization of the bidual of C(X) originally obtained by Kakutani

[25], and studied by Arens [2] and Kaplan [26], can be formulated for spaces

of norm-continuous vector functions via the introduction of C(X , (E* ,o*)).

The dual of the Bochner space L (p ,E) is always of the form C(X , (E* , a*))

[13, Remark] (whereas L°°(p,E*) fulfills this role only with an assumption

regarding the Radon-Nikodyn property [16, p. 98]).  C(X , (E* ,o*)) provides
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the dual of a space of vector measures [13] in a manner which parallels the

duality obtained for spaces of scalar measures by Gordon [19]. And the results

of Dixmier and Grothendieck [17, 20] characterizing those spaces C(X) which

are Banach duals have vector analogues which involve C(X , (E* , a*)) [14].

We will show that given compact Hausdorff spaces Xx , X2 and Banach du-

als E* , E*2 which satisfy a geometric condition, then the existence of an iso-

morphism S mapping C(XX ,(E\ ,o*)) onto C(X2 ,(F* ,a*)) with \\S\\ \\S~ ||

small implies that Xx and X2 are homeomorphic. The only result of this na-

ture known to the authors is found in [11], where it is assumed that the Xi are

extremally disconnected and the E* uniformly convex. Here we remove the

assumption concerning the extremally disconnected nature of the Xi, and the

geometric condition we impose is much less restrictive than the requirement of

uniform convexity.

Our results depend heavily upon the concept of a multiplier on a Banach

space E. (For the definition and properties of multipliers we refer to [4].)

The space of multipliers on E is denoted by Mult(F), while 38(E) stands

for the space of all bounded operators on E. Here we employ the notion of

e-multipliers which, for each e > 0, constitute a subset Mult£(F) of 38(E)

containing the unit ball in Mult(F). (Our use of the notation Mult£(F) can

be seen to agree with that of [7].) The geometric condition which will be im-

posed on dual spaces is essentially that, as e tends to 0, Mult£(F) comes ever

closer to a trivial set of multipliers consisting of scalar multiples of the identity

operator. In this case the unit ball of Mult(F), which is the intersection over

all e > 0 of Mult£(F), consists only of scalar multiples of the identity, and

Mult(F) will be called geneologically trivial.

Our arguments are also much dependent upon the notion of an ultraprod-

uct of Banach spaces. Here we follow the notation and terminology of [21],

except that for us any ultrafilter ST considered is invariably a free ultrafilter

on the set N of natural numbers. Thus the ultraproduct (En)y of a family of

Banach spaces (F„)„eN is the quotient space /°°(N , E^/N^ , where N7 is the

subspace consisting of those elements (en) e l°°(N ,En) with lim^ \\en\\ = 0.

Here (en)r denotes the equivalence class of (en) in (Fn)5r and ||(e"n)^|| =

lim^ ||ej|, [21, p. 75]. If all En are equal to some fixed Banach space E,

the ultraproduct is called an ultrapower, denoted by (E)^ . And given op-

erators Tn e 38(En) with supn||7*J| < oo, the operator on (En)r defined

°y (eJ.9- ~* (Pnen)?- l% called the ultraproduct of the family (Tn)neN and is

denoted by (Tn)r . Moreover ||(Fn)y|| = lim^ \\Tn\\.

Finally, throughout the article, if we are given any Banach space E the

associated scalar field will be denoted by K . Thus K = R or C .

2.   E-MULTIPLIERS

Definition 1. Given e > 0 and T e 38(E) we call T an e-multiplier if for

any ex ,e2 e E and r > 0, then \\ex - Xe2\\ < r for all X e K with |A| < 1
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implies that H^ - Te2\\ < r(l + e). The set of all e-multipliers on E is denoted

Mult£(F).

Obviously any multiplier F on F of norm not greater than 1 is an e-

multiplier for all e > 0, [4, proof of Theorem 3.3]. Also, any e-multiplier

has norm not greater than I + e . We shall need the following simple proposi-

tions.

Proposition I. If S and T are e-multipliers, then so are -T and (S + T)/2.

Proof. The result for -T is obvious. Thus suppose that \\ex -Xe2\\ < r for all

\X\ < 1. We have

\\ex - [(S + T)/2]e2\\ < \\\ex - Se2\\ + \\\ex - Te2\\ < 2 ■ \r(l + e),

so that (S+T)/2 is an e-multiplier.

We note, for future reference, that if T is an e0-multiplier then it is an

e-multiplier for any e > e0 .

Proposition 2. Let S be an isomorphism of Ex onto E2 with \\S\\ < 1 + x and

\\S~X\\ < l + x for some x > 0, and let e be defined by 1 + e = ( 1 + x)2. If T is

a multiplier on F, with \\T\\ < 1 and if f := STS~X then f is an e-multiplier
on E2.

Proof. Given ex ,e2 € E2 suppose that \\ex - Xe2\\ < r for all X e K with

\X\ < \\T\\. Then \\S~ ex - XS~ e2\\ < r(l + x) so that, since F is a multiplier,

US"1?, - TS~xe2\\ < r(l + x). Hence \\ex - te2\\ = \\SS~xex - STS~xe2\\ <

r(l + t)2 = r(l + e).

3. Banach spaces E with Mult(F) geneologically trivial

Definition 2. Given the Banach space E we will say that Mult(F) is geneolog-

ically trivial if for every r¡ > 0 there exists an e>0, e = e(n ,E) such that if

T e 38(E) is an e-multiplier then there exists k e K with ||F - A/|| < r¡.

Proposition 3. Let E be a Banach space and let & by any free ultrafilter on the

integers. Then Mult(F) is geneologically trivial if Mult((F)^) is trivial—i.e.

consists only of multiples of the identity operator.

Proof. Suppose that Mult^F)^) is trivial. If Mult(F) were not geneologi-

cally trivial there would exist an nQ > 0 and a sequence of (l/«)-multipliers

Tn e 38(E) such that for all X e K, \\Tn - XI\\ > t]0 . Then T := (Tn\r would
be an operator on (E)7 of norm not greater than 1 which is also a multiplier.

For suppose that en ,vn e E, and ||(*„)<?- - X(v„\r\\ = \\(en - Xv^^W < r

for all X e K with |A| < 1 . Then for each k = 1,2,... there exists

a set Ak of the filter fr such that if n e Ak then \\en - Xvn\\ < r(\ +

l/k) for \X\ < 1 and hence \\en - TnvH\\ < r(l + l/ik)(l + l/n). It fol-

lows that IK^)^ - P(vn),^r\\ = lim?- \\en - Tnvn\\ < r, which proves our claim

concerning T.

Since Mult((F)7) is trivial, there is a X e K such that (Tn - XI)r = 0.

But for each n there exists an en e E with \\e \\ = 1 and ||(Fn - XI)en\\ > r¡0 .
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Thus the element (en)^ of (E)r has norm one and \\(Tn - XI)^ >

11(7^-10^(^)^11 = nmsr \\(Tn-XI)en\\ > % » and this contradiction concludes

the proof.

Throughout the next section we will be concerned with Banach duals E which

are such that Mult(F) is geneologically trivial. We wish to observe, via the

following two propositions, that the class of such spaces is large enough to be

interesting.

Proposition 4. // E is a uniformly convex or a uniformly smooth Banach space,

then Mult(F) is geneologically trivial.

Proof. In view of Proposition 3 it suffices to show that if E is uniformly convex,

(uniformly smooth), then so is (E)^ [4, Proposition 5.1]. This fact is doubtless

known. We give the easy proof for uniformly convex spaces. The proof for

uniformly smooth spaces is analogous.

Thus suppose that E is uniformly convex. That is, given e > 0 there exists

a ¿(e) > 0 such that if e ,v e E, \\e\\ < 1, \\v\\ < 1 and \\e - v\\ > e then

\\e + v\\ < 2 - 23(e).  Hence assume e > 0 is given and (en)p,  (vn)$- are

elements of (E)^ with ||(é>„)^|| < l » UK,)*-II < 1 and 11(0*- ~ KM > e •
Then there is a set A in SF such that for ne A one has \\en\\ < 1, \\vn\\ < 1,

and \\en -vn\\> e so that \\en + vj < 2 — 20(e). Hence ||(en)^ + (uJ^H =

lim^r \\en + vj\ < 2 - 2ô(e).

Recall that if 1 < p < oo, an ¿^-projection on a Banach space F is a

projection Q.E^E such that

\\e\f = \\Qe\\p + \\e-Qef
for e e E.

Proposition 5. Let E be a Banach space and let Q: E —> E be a nontrivial Lp -

projection for some p with 1 <p < oo. (If p = 1 we assume that dim(F) > 2.)

Then Mult(F) is geneologically trivial.

Proof. Again, by Proposition 3 it suffices to show that Mult((F)^-) is trivial.

If we set Qn = Q for all n then Q := (Qn)$r is a nontrivial Lp-projection

on (E)r. Hence [8, p. 10] Q** is a nontrivial Lp-projection on (F)*^ . If

(E)r were to admit a nontrivial mutliplier T, then [5, p. 26] T** would be a

nontrivial multiplier on (F)*^* so thay by [4, Theorem 5.9] (F)*^ would admit

a nontrivial L°°-projection. But by [3, Theorem 3.5] this is impossible. Hence

Mult((F)^-) is trivial and we are done.

4. Isomorphisms of spaces of vector functions

Lemma 1. Let X be a compact Hausdorff space and E* a Banach dual such

that Mult(F*) is geneologically trivial. Given t] > 0 let e = e(rj ,E*) be related

to r] as in Definition 2. If then T : C(X , (E* , a*)) -> C(X , (E*, a*)) is an e-

multiplier there is a geC(X) with [|jp]| < ||F|| suchthat ||F(e*)-<g--É'*||oo <

21/11*'H for all e* e E*.
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Proof. Fix x e X. We know that if e* ,e2 e E* and if \\e* -Xe2\\ < r for all

X e K, [jtj < 1 then

||e* - Xe^W^ < r   for such X so that

ll<-T(e¡)IU<r(l+e),

Define Sx : F* -+ F* by S^e*) = (F(e*))(x). Thus if e*,é>* € F* and

\\ex* - Xe21| < r for all |A| < 1 we have

\\e*x-Sx(e;)\\ = \\e\(x)-(T(e*2))(x)\\

^K-neDlloo^O+e)

so that Sx is indeed an e-multiplier on E* and, obviously, \\SX\\ < \\T\\.

By Definition 2 there exists a /I, e K such that

(1) 115,(0 - X/1| = ||(F(e*))(x) - i/II < Vlkl

for e* e E*. Thus fix an e0 € F (the predual of F* ) with ||e0|| = 1 and take

an é-Q e F* with \\e^\\ = 1 such that (e0 ,e^) = 1. We have

\(e0 ,(T(e*0))(x)) -Xx\ = \{e0 ,(T(e*0))(x)) -Xx(e0,e>0)\ < r,.

Hence, for every e* e E*,

(2) \\{e0,iT{*r0))(x))e*-Xxe'\\<ri\\em\\.

Thus if e* e E* we have

||(r(e*))(x)-<ev(r(e;))(x))0|

< \\(T(e))(x) - Xxe*\\ + \\Xxe* - (e0 , (T(e*0))(x)e')e*\\

< 2?7||e ||

so that, if we set g := (e0 , (F(e*))(-)), the proof of the lemma is complete.

Lemma 2. Let n > 0 be given and let E be any Banach space. Then there exists

an e > 0, e = e(n), such that if T : E —> E is an e-multiplier, if u0 e E,

||w0|| < 1 with \\TuQ\\ < e, and if vQ = Tvx where vxeE, \\vx\\ < 1 then

IK + ̂ oll <1 + '.-
Proof. If the theorem were false then there would exist a number r¡0 > 0, a

sequence {En} of Banach spaces, a sequence {Tn} of (l/«)-multipliers, Tn :

En-+ En, and two sequences {un} , {v'n} with un,v'ne En for all n , \\un\\ <

1, \\Tun\\ <l/n, \\v'j < 1 such that if vH = Tnv'n then

HMn +VnW >■'!'+%•

Let T be the map from (En)r to itself given by T :- (Fn)y . Set u := (w„)y

and v' := (v'n)r . We have ||u|| < 1, Tu = 0, \\v'\\ < 1 and

\\u+ Tv'\\ > 1 + n0 > 1.
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But F is a multiplier (by the same argument as that used in the proof of

Proposition 3) with ||F|| = lim^- ||Fn|| < lim¿r(l + l/n) = 1 and by [6, Lemma

2.2] we have

||m + w|| = max{||w|| ,||f ||}

for u in the kernel of T and v in the range of T. This contradiction concludes

the proof of the lemma.

We note that the proof of Lemma 1 shows that there exists a map which

associates with each e-multiplier T on a space C(X ,(E* ,rj*)),with Mult(F*)

geneologically trivial, a function g e C(X) with WgW^ < ||F||. We denote this

correspondence by writing g = p(T). This definition of p and the proof of

Lemma 1 show that if I is the identity operator on C(X ,(E* ,o*)) then p(I) =

1. Note that if F, , T2 and aTx + T2 all belong to Mult£(C(X , (F* ,**))) for

some a e K then p(aTx + T2) = ap(Tx) + p(T2).

Moreover, given g e C(X), we will denote by M that operator on

C(X ,(E* ,o*)) which is multiplication by g. Obviously \\M \\ = HgJI^ .

Since Mult(F*) is geneologically trivial, hence trivial, it follows from [6, The-

orem 2.4] and [18, p. 490] that Mult(C(X ,(E* ,o*))) is precisely the set

{Mg:ge C(X)}.

Proposition 6. If T e Mult(F) and \\T\\ < I + e then T is an e-multiplier

on E.

Proof. Suppose that ex ,e2e E and r > 0 are such that for all scalars X with

|A| < 1 we have \\ex - Xe2\\ < r. Then by setting X = ±1 and using the triangle

inequality we have ||e2|| < r. Since T e Mult(F) we have F/(l +e) e Mult(F)

and ||F/('l +e)|| < 1 so that

\\ex - Te2\\ < H*, - [F/(l + e)]e2\\ + \\e2\\ \\T\\[l - 1/(1 + e)]

< r + r(l + e)[l - 1/(1 + e)] = r(l + e).

Lemma 3. Let X be a compact Hausdorff space and let E* be a Banach dual

with Mult(F*) geneologically trivial. Let rj be a given positive number. Let e,

denote the e(n ,F*) of Definition 2 and let e2 denote the e(r)) of Lemma 2.

Set e0 = e0(n ,E*) := min{e2(r]) ,ex(e2(t]) ,E*)} . Then if T is an e-multiplier

on C(X ,(E* ,o*)) we have

\\T-M     \\ <2n.

Proof. Let F be a nonzero en-multiplier. SetJ 0 *

t ■= -IT - M     )1   .-  2\1        mp{T)> ■

Since T is an e(e2(t]) ,F*)-multiplier, by Lemma 1, for any e* e F* we have

(3) unOiioo^»!-
Let F be any element of C(X ,(E* ,o*)) with HF^ < 1 . We have

sup{||f(F) + e*||oo :e* e F* ,|k*|| <1}=1 + H^F)^.
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On the other hand, by Propositions 1 and 6 and our choice of e0, T is an

e2(r])-multiplier so that by (3) and Lemma 2, for any e* e E* with ||**|| < 1

we have

\\t(F) + e\\00<l + n.

Hence HT^F)^ < r\ so that ||F|| < r\ and we are done.

Theorem. Let Xi be compact Hausdorff spaces and E* Banach duals with

Mult(F*) geneologically trivial for i = 1,2. Then there is a positive num-

ber e such that the existence of a surjective isomorphism S : C(XX , (E* , a*)) —>

C(X2,(E*2 ,fj*)) with ||,S||||S_I|| < 1 +e implies that Xx and X2 are homeo-

morphic.

Proof. First let r\ be a real number with 0 < n < ± and, for i = 1 ,2, choose

eQ(t],E*) as in Lemma 3. Then let e be a positive number satisfying e <

min{e0(i7 ,F*), e0(>7,F*)} and such that

(4) (l+e)2(j_+2*£<$.

In order to facilitate the arguments that follow it will be desirable to have a

symmetric relationship between S and S~x . Thus, defining x by (1 + t) =

1 + e and replacing S, if necessary, by a suitable scalar multiple we may assume

that

Y^W^oo^WSPlL^^ + rWlL

for F e C(XX , (F* ,o*)), and consequently that \\S\\ < 1 + x, \\S~X\\ <l + x.

We let p be the map from the set of e-multipliers on C(X2 ,(E2 ,o*)) to

C(X2) which appears in Lemma 3, and note that if f e C(XX) and U/H«, < 1

then, by Proposition 2, S o Mf o S~x is an e-multiplier on C(X2, (F*, o*)).

We may thus define a map <I>0 from the unit ball of C(XX) to C(X2) by

%(f) = p(SoMfoS~X),        for   feC(Xx),    ll/H^ <1.

If fx ,f2 and afx + f2 (some a e K ) are all elements of C(XX ) of norm

less than or equal to 1, so that by Proposition 2, S o M, o S" , S o M, o5_l,

and S o Af , + r o S~ are all e-multipliers on C(X2,(E2 ,o*)) then, as noted

following the proof of Lemma 2, <f>0(afx + f2) = a®0(fx) + &0(f2). Thus

given / € C(XX), take any Rx > WfW^ and consider Rx -0o(f/Rx). If

R2> Rx > 11/11^ then R2 = Rx • R for some tf > 1 and i?2 • <3>0(f/R2) =

/?, • i? • 4>0(//Ä, -R) = RX-R- (l/R) ■ ®0(f/Rx) = Rx ■ %(f/Rx). Hence if
we denote by lim/?_too/?-<I>0(//i?) the common value of Rx -^0(f/Rx) for all

R{ > U/H«,, then <*(/) := lim^^^ Ä • %{f/R) is a linear map from C(XX)

to C(Z2) which agrees with <I>0 on the unit ball of C(XX). (Equivalently,

*(/) = ll/lloo^o^/ll/Hoo) » for / * °-) Now if 0 ^ / g C(A-,) set /, =

//11/11 oo • Then by Lemma 3 \\SoM^r1- M^/JI < 2V s0 that

(5) \\SoMfoS~X-M     \\<2r1\\f\\oo,        feC(X{).
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Hence we have

\\\SoM)oS^-mj)\\J<\\SoMfo^-l-M^

<2r7||/||0O,      feC(Xx),

and it is clear that

ll/lloo/O +«) < \\SoMfoS-l\\ < (1 +e)\\f\\oo

for / e C(XX). It follows that

(6) [1/(1 + e) - 2,7]||/||oo < mf)\\oo < [1 + e + 2//1II/IU ,        / € çfo).

Let 4*0 be the corresponding map from the unit ball of C(X2) to C(XX)

given by ¥„(*) = /?(5"' oM^S) for f € C(AT2), UsH«, < 1. By symmetry

we have

(7) ||S-1 o Mg o S - MVo(g)\\ < 2f7||g||00 ,        II^IU < 1 ,

and if 4* corresponds to *F0 as <P corresponds to <P0, then

(8) IPFII < 1 + e + 2i/,

and (7) holds with ¥ replacing V0 for all g e C(X2). Thus for any g e C(X2)

with IIäIIoo - ' we nave

ll*(^))-^00  =  11^^,-^

Wls» ~ 5 ° MV{g)

= \\M<>mi!))-So(S-XoMi!oS)oS-X\\

- WM<t>CV(g)) ~S° M<¥(g) ° S      II

+ US o MV{g) o S~X - S o (S~X o Mg o S) o S~X ||

^^lin^lloo + lisil^lis"1!!
(8) 2
< 2rj[l + e + 2r¡] + 2r¡(l + e)

< 2n(l + e)[l + e + 2r¡(l + e)] + 21/(1+ e)2)2

= 4f7[l+f7](l+e)2.

As (4) implies that

(9) 2f7(l+e)'<i
2 ^

1^ !■the condition r\ < ±(< \) gives ||0('r'(^)) - #|| < 1, and thus, by the Riesz

lemma, Q> is surjective. And since (9) gives

(10) l-2f/(l+e)> l-2>/(l+e)2> §

it now follows from the inequality on the left in (6) that <P is injective. Thus

<P is an isomorphism mapping C(XX) onto C(X2) which, by (6), satisfies

HON lid,-'y < O+e)2 +2,7(1+e) < (1 +e)2[l + 2n]

11   Ini       "-       l-2n(l+e) l-2r¡(l+e)2
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Since by (4) the numerator in this last expression is less than | and by (10) the

denominator is greater than § , we have ||4>|| ||<P~'|| < 2 so that Xx and X2

are homeomorphic [1, 9, 10].
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