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STABLE RANK OF SOME CROSSED PRODUCT C -ALGEBRAS

YIU TUNG POON

(Communicated by John B. Conway)

Abstract. Let C(X) xT Z be the crossed product associated to a dynamical

system (X , T). We give a necessary and sufficient condition for C(X) xT Z

to have a dense set of invertible elements. When X is zero-dimensional, we

obtain more equivalent conditions which involve the isomorphism between the

K-groups of C{X)xtZ and C*-algebras defined by some T-invariant closed

subsets of X . As an application, we show that these conditions are not satisfied

by most subshifts and all nontrivial irreducible Markov shifts. When (X, T)

is indecomposable, an equivalent condition is that the intersection of all T-

invariant nonempty closed subsets of X is nonempty.

1. Introduction

Given a unital C*-algebra A , let Lgn(A) be the set of «-tuples in A" which

generates A as a left ideal. The topological stable rank of A is defined (Rieffel

[15]) as the smallest integer n such that Lgn(A) is dense in A" . If no such

n exists, the topological stable rank of A is defined to be oo . For simplicity,

we will just call this the stable rank of A , sr(A). If A does not have a unit,

then sr(A) is defined to be sr(^4), where A is the C*-algebra obtained from

A by adjoining a unit [8]. One of the reasons for studying stable rank is to

obtain cancellation theorems for the classification of projective modules over A

(e.g. Rieffel [16], Sheu [19]). Thus, given a C*-algebra A, one would like to

determine sr(A). In particular, sr(^4) = 1 if and only if the invertible elements

are dense in A. This case has attracted a lot of attention [2, 6, 7, 12, 15,

17, 18]. One of the nice properties of these C*-algebras is that they all have

cancellation for projections [1, 6.4.1]. In this note, we will study the stable rank

of the crossed product associated to some dynamical systems.

A (dynamical) system (X , T) consists of a compact space X and a homeo-

morphism T on X . Given a system (X , T), we have an action of the integers

Z on C(X), the C*-algebra of complex continuous functions on X. This

gives a crossed product C(X) xT Z  [8], which is a C*-algebra generated by
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C(X) and a unitary U satisfying UfU* = /o T~] for f e C(X). If Y is

a nonempty /-invariant closed subset of X, then we have a system ( Y , T).

By restricting the functions in C(X) to Y, we have a C*-homomorphism n

from C(v\f) xr Z onto C(Y) xT Z. Let IY be the kernel of n. Our first

result is that sr(C(*) xT Z) = 1 if and only if sr(/r) = sr(C(Y) xT Z) = 1

and the homomorphism nt:Kx(C(X) xTZ) —* KX(C(Y) xT Z) is onto. Then

we restrict our attention to systems (X, T) where X is zero-dimensional. A

compact metrizable space is said to be zero-dimensional if the topology on X

has a basis of sets which are both closed and open (clopen). For such systems,

sr(C(X) xT Z) is either 1 or 2 (Rieffel [15, Theorem 7.1]). By computing

the Kx -groups explicitly, we derive some necessary conditions on (X , T) for

sr(C(X) xTZ) = 1 . An application of this result shows that for most subshifts

and all nontrivial irreducible Markov shifts [4], sr(C(X) xT Z) = 2. A system

(X , T) is said to be minimal if X contains no nontrivial /-invariant closed

subsets. In [12], Putnam proved that if the zero-dimensional system (X, T) is

minimal and X has no isolated points, then sr(C(X) xTZ) = 1. A key step in

his proof is that for every nonempty closed subset Y of X, the C*-subalgebra

AY of C(X) xT Z generated by C(X) and {Uf:fe C(X) ,f(y) = 0 for all
y e Y} is an ^F-algebra—i.e., AY is the closure of an increasing sequence

of finite-dimensional subalgebras [5]. This result has been generalized to the

following:

Proposition 1.1 [11, Theorem 2.2]. Given any zero-dimensional system (X, T)

and a nonempty closed subset Y of X, the subalgebra Ay is A F if and only

if U„€z T"(W) = X for every clopen subset W containing Y.

We will use D(X , T) to denote the set of closed subsets Y of X satisfying

the condition in the above proposition. Suppose Y e D(X , T) is /-invariant.

Theorem 3.1 gives three conditions equivalent to sr(C(X) xT Z) = 1, one

of which is that sr(C(F) xT Z) = 1 and every /-invariant clopen subset

of Y is the intersection of Y and a /"-invariant clopen subset of X. Let

E(X , T) be the set of minimal (in the sense of inclusion) elements in D(X , T).

Suppose Y e E(X, T) is /-invariant. Let i be the embedding of AY into

C(X) xT Z . Then Theorem 3.4 shows that sr(C(X) xr Z) = 1 if and only

if it:K0(AY) —► K0(C(X) xT Z) is an isomorphism. A system (X , T) is said

to be indecomposable if X and 0 are the only /-invariant clopen subsets of

X. In §4, we prove that if (X , T) is an indecomposable zero-dimensional sys-

tem, then sr(C(X) xT Z) = 1 if and only if the intersection of all /"-invariant

nonempty closed subsets of X is nonempty. We conclude with some remarks

and an example in connection with a result of Pimsner [9].

We will use Blackadar [1], Effros [5], and Pedersen [8] for our references on

K-theory, ,4F-algebras and C*-algebras.

Theorem 4.1 has also been proven by Putnam in a revised version of [13],

which we received after this paper had been submitted.
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2. Stable rank of crossed products

We start with a result of G. Nagy (Nistor [7, Lemma 3]):

Lemma 2.1. Let 0—►/—>,4—>5—>0 be an exact sequence of C*-algebras

such that sr(I) = sr(Z?) = 1. Then sr(A) = 1 if and only if the index morphism

Ö : KX(B) — K0(I) is zero.

Lemma 2.2. Let 0 —► / —► A -?-* B —► 0 be an exact sequence of C*-algebras.

Then sr(A) = 1 if and only if sr(B) = sr(7) = 1 and nf:Kx(A) -* KX(B)

is onto.

Proof. From 0 —* I -^ A -^-* B —► 0, we have a six-term exact sequence of

A^-groups [1]. So the result follows from the exactness at KX(B) :

- KX(A) -2% KX(B) -^ K0(I) -

and Lemma 2.1.    D

So far, most of the results on determining sr(^) = 1 have been done on

simple C*-algebras A (e.g. [12, 14]). Given a dynamical system (X, /), the

crossed product C(X) xTZ is not simple if and only if there exists a nonempty

/-invariant proper closed subset Y of X. By restricting the action of /

and the functions in C(X) on Y, we have a surjective C*-homomorphism

n: C(X) xTZ —> C(Y)xTZ . Let Iy be the kernel of n ; then we have an exact

sequence of C*-algebras 0 —► IY —» C(X) xTZ —> C(Y) xT Z -* 0. Applying

Lemma 2.2 to this exact sequence, we have

Theorem 2.3. Let (X , /) be a dynamical system and Y a nonempty T-invari-

ant closed subset of X. Then sr(C(X) xT Z) = 1 if and only if

sr(IY) = sr(C(Y)xTZ) = 1

and nt:KX(C(X) xT Z) -> KX(C(Y) xT Z) is onto.

Given a zero-dimensional system (X, T), let C(X ,Z) be the group of

integer-valued continuous functions on X and C (X ,Z) the /-invariant

functions in C(X ,Z). Suppose y is a nonempty closed subset of X. Define

<t>Y:C(X ,Z) -» C(Y ,Z) by <Dy(/) = f\Y , the restriction of / to Y.

Lemma 2.4. Let (X, /) be a zero-dimensional dynamical system and Y a

nonempty T-invariant closed subset of X. Then KX(C(X) xTZ) ~ C (X ,Z),

Kx(C(Y)xTZ) ~ CT(Y ,Z) andthemap nit:Kx(C(X)xTZ) -» Kx(C(Y)xTZ)

is given by <PY: CT(X , Z) -♦ CT(Y , Z).

Proof. We compute KX(C(X) xT Z) by the Pimsner and Voiculescu six-term

exact sequence [10]:

KX(C(X))        ^^   KX(C(X)) -i_ Kx(CiX)xTZ)

K0(C(X)xTZ) —-K0(C(X))    £^-        K0(C(X))
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Since X is zero-dimensional, KX(C(X)) = 0. Hence, the map

KX(C(X) xTZ) — K0(C(X)) is always one-to-one. Also, K0(C(X)) is iso-

morphic to C(X ,Z), the integer-valued continuous functions on X. Thus,

Kx(C(X) xTZ) is isomorphic to the kernel of id, -Tt:KQ(C(X)) - KQ(C(X)),

which is precisely C (X , Z) (see [10] for details on the homomorphisms in the

exact sequence). For each f e C (X ,Z), there exist integers n¡, 1 < i < k,

and a clopen partition {0¡: I < i < k} of X such that each 0¡ is /-invariant

and / = ¿2i=l njXo- > where Xo denotes the characteristic function on O. Since

all 0¡ are /-invariant, 2J¡=i Un'x0 is a unitary of C(X)xTZ . An analysis of

the connecting homomorphisms in the proof in [10] shows that X);=1 niXa ~*

rJ2j=l U"'Xo^ ßives an isomorphism of C (X ,Z) and KX(C(X) xT Z).

Similarly, KX(C(Y) xT Z) * CT(Y ,Z) and the result follows.      D

Remark 2.5. Under the conditions in Lemma 2.4, we note that the map

<Py: CT(X , Z) —» CT(Y , Z) is onto if and only if for every /-invariant clopen

subset Q of Y, there exists a /-invariant clopen subset O of X such that

<2 = Onr.

Corollary 2.6. Suppose (X , T) is a zero-dimensional system with no nontrivial

T-invariant clopen subsets. If X contains two disjoint nonempty T-invariant

closed subsets, then sr(C(X) xTZ) -2.

Example 2.7. Let (X ,T) be a zero-dimensional system which contains a point

with dense orbit and two periodic points xx ,x2 with disjoint orbits. Then

the conditions in Corollary 2.6 are satisfied and sr(C(X) xTZ) = 2. Hence,

for most subshifts and all nontrivial irreducible Markov shifts [4]  (X, /),

sr(C(X)xTZ) = 2.

3. Subsets in D(X, T) and E(X, T)

Throughout this section, (X , T) will denote a zero-dimensional dynamical

system. For each nonempty closed subset Y of X ,AY is the subalgebra of

C(X) xTZ generated by C(X) and {Uf:fe C(X) ,f(y) = 0 for all y e Y} .
Let D(X , T) be the set of closed subsets Y of X such that U„€Z Tn(W) = X

for every clopen subset W containing Y. By Proposition 1.1, AY is an AF

subalgebra if and only if Y e D(X , T). Let E(X , T) be the set of minimal

(in the sense of inclusion) elements in D(X ,T) [11].

Theorem 3.1. Let Y be a T-invariant subset in D(X ,T) and n:C(X)xTZ —>

C(Y) xTZ as defined in §2. Then the following are equivalent:

(1) sr(C(X)xTZ) = 1.

(2) sr(C(Y)xTZ)= I and nti:Kx(C(X) xTZ) -» Kx(C(Y)xTZ) is an

isomorphism.

(3) sr(C(7) xTZ) = 1  and <S>Y:CT(X ,Z) -♦ CT(Y ,Z)  is an isomor-

phism.



872 YIU TUNG POON

(4)   sr(C(7) xT Z) = 1  and for each  T-invariant clopen subset Q of Y

there exists a T-invariant clopen subset O of X such that Q — O n Y.

Proof. Let IY be the kernel of n , i.e., IY is the ideal of C(X)xTZ generated

by functions in C(X) vanishing in Y. Since Y is /-invariant, IY is an ideal

of the A F subalgebra AY . Thus, IY is also A F . So we have sr(/r) = 1 and

Ä^, (IY) = 0. Hence, nm is one-to-one and the result follows from Theorem 2.3,

Lemma 2.4, and Remark 2.5.    D

Remark 3.2. In the above theorem, since 7rt is always one-to-one, the "isomor-

phism" conditions in (2) and (3) can be replaced by "onto".

Before proving the next theorem, we need the following generalization of a

result of Putnam [13, Theorem 4.1]:

Proposition 3.3. Let Y e D(X , T). There is an exact sequence

0 - CT(X ,Z) -^U C{Y,Z)-Z+ K0(AY) ■£-> K0(C(X) xTZ)^0.

Here / is the embedding of Ay into C(X) xT Z . For our application, the

definition of y/ is not important. We include it here just for completeness:

Given / e C(Y ,Z), we choose g e C(X ,Z) such that g\Y = f. Let /, be

the embedding of C(X) into AY and /,,: KQ(C(X)) —> K0(AY). Identifying

K0(C(X)) with C(X ,Z), we put y/(f) = ix.(g - goT). This definition is

due to Putnam in [13], where he proved the result for minimal systems (X , T).

But, the proof for the general case is essentially the same.

Theorem 3.4. Let Y be a T-invariant subset in E(X , T). The following condi-

tions are equivalent:

(1) sr(C(X)xTZ)= I.

(2) nt:Kx(C(X) xT Z) —► KX(C(Y) xT Z) is an isomorphism.

(3) <Py: C (X ,Z) —> C(Y ,Z) is an isomorphism.

(4) it:K0(AY) -» K0(C(X) xT Z) is an isomorphism.

(5) For each clopen subset Q of Y there exists a T-invariant clopen subset

O of X such that Q = Or\Y.

Proof. First we note that for any Y e D(X , T), conditions (3), (4) and (5) are

always equivalent by Proposition 3.3.

Let Y e E(X , T) be /-invariant. We are going to prove that T(y) = y for

all y e Y. Suppose the contrary that T(y) / y for some y e Y. Then we can

choose a clopen subset O of X containing y such that On T(O) - 0. So,

we have that Y\0 is a proper closed subset of Y . Let W be a clopen subset

of X containing Y\0 ; we have

T~\W) D T~l(Y\0) 2 T~X(YC\T(0)) DYnO

^WUT~1(W)DY

=> (J T"(W)= {J T"(W\JT'\W)) = X.
n^Z neZ

Thus, Y\0 e D(X , /), contradicting Y e E(X , /).
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Since the action of / on Y is the identity, C(Y) xT Z is isomorphic to

the C*-tensor product C(Y)<%> C(S) [8], where S is the unit circle. Since Y

is zero-dimensional, sr(C(Y) ® C(S)) = 1. So the result follows from Theorem

3.1 because CT(Y ,Z) = C(Y ,Z).    D

Remark 3.5. If Y e E(X , T) consists of a single fixed point, then condition (5)

and hence all conditions in Theorem 3.4 are obviously satisfied. In Corollary

4.2, we will give a partial converse of this result. Here, we give a class of systems

satisfying this condition:

Let / be a continuous strictly increasing function on the unit interval [0,1]

with Z(0) = 0, Z(l) = 1 and T(x) f x for 0 < x < 1 . Choose a countable

/-invariant dense subset S of the open interval (0,1). For each 0 < s <

t < 1, let Xu d be the characteristic function on the interval [s , t). Let A be

the commutative C*-algebra generated by {x,s ,yS,t € S} and the constant

function 1. Then A is isomorphic to C(X) for a zero-dimensional space X

which contains the interval [0,1) and the action of / extends to X. One

checks that 0 is a fixed point and {0} e E(X , T).

The above construction is similar to the one of Cuntz [3, Example 2.5]. Sim-

ilar examples can also be constructed on higher-dimensional analogues of the

unit interval.

4. Indecomposable systems

Given a system (X , T), if X can be decomposed into two disjoint nonempty

/-invariant closed subsets Xx and X2, then C(X) xT Z is isomorphic to

the direct sum 0^=1 C(X¡) xT Z . Hence, sr(C(X) xT Z) = 1 if and only if

sr(C(X¡) xr Z) = 1 , for /' = 1 ,2. (X , T) is called indecomposable if no such

decomposition exists, i.e., the only /-invariant clopen subsets of X are X

and 0.

Theorem 4.1. Let (X , T) be an indecomposable zero-dimensional dynamical

system. Then sr(C(X) xT Z) = 1 if and only if the intersection of all nonempty

T-invariant closed subsets of X is nonempty.

Proof. Let Y be the intersection of all nonempty /-invariant closed subsets of

X.

Suppose sr(C(X) xTZ) = 1 . Since (X , T) is indecomposable, by Corollary

2.6, the intersection of any two nonempty /-invariant closed subsets of X is

nonempty. Thus, by the finite intersection property, Y is nonempty.

Conversely, suppose Y is nonempty. Clearly, y is a /-invariant closed

subset of I. We are going to show that ( 1 ) Ye D(X , T) and (2) the action

of / on Y is minimal. Then the result will follow from (4) in Theorem 3.1

because sr(C(Y) xT Z) = 1 for a minimal system (Y , T) (Putnam [13]).

To prove (1), let W be a clopen subset containing Y . Then X\\Jn€Z T"(W)

isa /-invariant closed subset disjoint from Y . Thus X\\JneZ T"(W) = 0 and

Un6Z T"(W) = X. Hence,  Y e D(X , T).
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To prove (2), for every y e Y, the orbit closure of y is a /-invariant closed

subset of Y and hence is equal to Y.    O

Corollary 4.2. Suppose (X , T) is an indecomposable zero-dimensional system

such that sr(C(X) xTZ) = 1. Then every T-invariant Y in E(X,/) consists

of a single point.

Proof. From the proof of Theorem 3.4, we have that T(y) = y for every y e Y.

Thus, Y is nonempty only when it consists of a single point,     o

Remark 4.3. Let (X ,T) be a (not necessarily zero-dimensional) dynamical

system. A point x e X is said to be pseudo-nonwandering (Pimsner [9]) if for

every open cover {0,}"_.  of X and 0¡   containing x, there exist 0¡ ,2 <
K t   J   l — I í j iff

k<m, such that 0¡ n T~\Oi+[ ) -¿ 0 for 2 < j < m and Olm n T~l (0¡t )¿0.

Let X(T) be the set of all pseudo-nonwandering points in X. Pimsner [9]

proved that the following three conditions are equivalent: (1) X(T) = X, (2)

C(X)XjZ contains no nonunitary isometry, and (3) there is a unital imbedding

of C(X) xT Z into an AF algebra. Since a C-algebra with stable rank 1

cannot contain any nonunitary isometry, X(T) = X is a necessary condition

for sr(C(.Y) xT Z) = 1 (this connection is communicated to us by Putnam).

The following example shows that the condition is not sufficient.

Example 3.7. Let X = Z U {oo , - oo} be the two-point compactification of the

integers. Define a homeomorphism /: X —► X by

T(cx>) = oo ,        /(—oo) = —oo ,

( x + 2 ,    xeZ , even,
T(x) - {

\ x -2 ,    xeZ , odd.

It is straightforward to check that X(T) = X and Y = {00,-00} is a

/-invariant subset in E(X , T). Hence, sr(C(X) xT Z) / 1 by Corollary 4.2.

We note from Example 2.7 that any nontrivial irreducible Markov shift can

also serve this purpose.
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