SLIDING HUMP TECHNIQUE AND SPACES WITH THE WILANSKY PROPERTY

DOMINIKUS NOLL AND WOLFGANG STADLER

(Communicated by John B. Conway)

ABSTRACT. We prove that if E is a BK-AK-space whose dual E' as well is BK-AK, then $\sigma(E',F)$ and $\sigma(E',\overline{F})$ have the same convergent sequences whenever F is a subspace of E'' containing Φ and satisfying $F^{\beta}=E^{\beta}$. This extends a result due to Bennett [B₂] and the second author [S]. We provide new examples of BK-spaces having the Wilansky property. We show that the bidual E'' of a solid BK-AK-space E whose dual as well is BK-AK satisfies a separable version of the Wilansky property. This extends a theorem of Bennett and Kalton, who proved that I^{∞} has the separable Wilansky property.

Introduction

G. Bennett [B₂] and the second author [S] have independently obtained a positive answer to the following question of Wilansky: Is c_0 the only FK-space, densely containing Φ , whose β -dual is l^1 ? Both approaches are essentially based on a characterization of the barrelledness of certain sequence spaces by means of their β -duals. In the present paper we extend the Bennett/Stadler result, providing more examples of BK-spaces having the Wilansky property (in the sense introduced in [B₂]).

Let us explain the situation by considering a typical example. The classical sliding hump argument (Toeplitz/Schur) asserts that $\sigma(l^1,c_0)$ -bounded sets are $||\ ||_1$ -bounded. The Bennett/Stadler result generalizes this to the extent that still $\sigma(l^1,E)$ -bounded sets are $||\ ||_1$ -bounded, when $\Phi\subset E\subset c_0$ and $E^\beta=l^1$. The latter may be expressed equivalently by saying that every subspace E of c_0 containing Φ and having $E^\beta=l^1$ is barrelled. Finally, our present attempt shows that $\sigma(l^1,E)$ -bounded sets are $||\ ||_1$ -bounded when $\Phi\subset E\subset l^\infty$ and $E^\beta=l^1$. Actually, we prove a little more. We show that $\sigma(l^1,E)$ and $\sigma(l^1,\overline{E})$ have the same convergent sequences in case $\Phi\subset E\subset l^\infty$ and $E^\beta=l^1$. This extension requires a modified technique, since both the approaches in $[B_2]$ and

Received by the editors December 16, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 40H05.

Key words and phrases. Sliding hump technique, BK-spaces, spaces with the Wilansky property.

[S] make use of the sectional convergence in E (when $E \subset c_0$), and the latter is no longer available (when $E \subset l^{\infty}$).

We obtain new classes of BK-spaces having the Wilansky property. For instance, we prove that every BK-AK-space E, such that S(E') is separably complemented in E', has the Wilansky property. Here S(E') denotes the space of all $y \in E'$ which have sectional convergence with respect to the norm.

We prove that the bidual E'' of a solid BK-AK-space E whose dual E' is as well BK-AK has the following separable Wilansky type property: If D is a norm dense subspace of E'' containing Φ and having $D^{\beta} = E^{\beta}$ (=E'), then every separable FK-space F containing D must actually contain E''. When applied to the case $E = c_0$, this provides a result of Bennett and Kalton $[BK_1, W, p. 259]$.

Notation. The sections of a sequence $x \in \omega$ are denoted by

$$P_n x = \sum_{i=1}^n x_i e^i \,,$$

where e^i are the unit vectors. If $P_n x \to x$ $(n \to \infty)$, then x is said to have sectional convergence. If E is a BK-space, then S(E) denotes the space of all $x \in E$ having sectional convergence with respect to the norm on E.

Concerning all other notions from sequence space theory, we refer to the book [W].

THE MAIN THEOREM

This section presents our fundamental result.

Theorem 1. Let E be a BK-AK-space such that S(E') is complemented in E' with separable complement L. Let $M = S(E')^{\perp}$ be the annihilator of S(E') in E''. Let F be any subspace of $E^{\beta\beta}$ containing Φ and suppose $F^{\beta} = E^{\beta}$ (= E'). Then $\sigma(E', F + M)$ and $\sigma(E', \overline{F} + M)$ have the same convergent sequences.

Proof. We need some preparations. We may assume that E has a monotone norm (see [W, p. 104]). Let $p_1 \colon E' \to S(E')$, $p_2 \colon E' \to L$ be the projection operators corresponding with the decomposition $E' = S(E') \oplus L$. Notice that $E'' = S(E')^{\perp} \oplus L^{\perp}$, $L' = S(E')^{\perp} = M$. We define norm continuous linear operators $Q_n \colon E' \to E'$, $n \in \mathbb{N}$, by

$$Q_n y = P_n \circ p_1 y + p_2 y.$$

Then we have

$$||y - Q_n y|| = ||p_1 y - P_n \circ p_1 y|| \to 0.$$

We have to prove that $\sigma(E', F+M)$ -convergent sequences are $\sigma(E', \overline{F}+M)$ -convergent. To this end, it suffices to prove that every $\sigma(E', F+M)$ -null

sequence is bounded in norm. Indeed, suppose this has been proved for a $\sigma(E', F + M)$ -null sequence (y^n) , $||y^n|| \le K$, say. Then, for $\overline{x} \in \overline{F}$ fixed and $\varepsilon > 0$ choose $x \in F$ having $||x - \overline{x}|| < \varepsilon/K$. Then

$$|\langle \overline{x}, y^n \rangle| \le K||x - \overline{x}|| + |\langle x, y^n \rangle| < \varepsilon$$

for $n \ge n(\varepsilon)$.

Let (y^n) be a $\sigma(E', F + M)$ -null sequence and assume it is not bounded in norm, $||y^n|| \ge n2^n$, say. Let $v^n = y^n/n$.

I. There exist strictly increasing sequences (k_j) , (n_j) of integers such that the following conditions (1) and (2) are satisfied:

(1)
$$||Q_{k_{i-1}}v^{n_j}|| \le 2^{-j}$$
, $j = 1, 2, \ldots$

(2)
$$||v^{n_j} - Q_{k_i}v^{n_j}|| \le 2^{-j}$$
, $j = 1, 2, \ldots$

Suppose k_1 , ..., k_j and n_1 , ..., n_j have already been defined in accordance with (1) and (2). We claim that $||Q_{k_j}v^n|| \to 0$ $(n \to \infty)$. Since (y^n) is $\sigma(E', F + M)$ -null, (p_2y^n) is bounded for $\sigma(L, M)$, hence is norm bounded, hence $||p_2v^n|| \to 0$. On the other hand, $y^n = p_1y^n + p_2y^n$ implies that (p_1y^n) is $\sigma(E', F + M)$ -bounded, hence (p_1v^n) is $\sigma(E', F + M)$ -null, hence is coordinatewise null in view of $\Phi \subset F$. Clearly this implies $||P_{k_j}p_1v^n|| \to 0$, proving our claim. But now it is clear that a choice of $n_{j+1} > n_j$ satisfying (1) is possible.

Next observe that $||v^{n_{j+1}}-Q_kv^{n_{j+1}}||\to 0 \ (k\to\infty)$. This permits a choice of $k_{j+1}>k_j$ in accordance with (2).

II. Let $z^j = Q_{k_j} v^{n_j} - Q_{k_{j-1}} v^{n_j} = P_{k_j} p_1 v^{n_j} - P_{k_{j-1}} p_1 v^{n_j}$, and let $\alpha_j = 1/||z^j||$. Then (α_j) is an l^1 -sequence by (1), (2). Observe that $\alpha_j z^j \to 0$ with respect to $\sigma(E', F + M)$, but $||\alpha_j z^j|| = 1$. Therefore, a result of Pelczyński [P] guarantees the existence of a basic subsequence $(\alpha_{j_r} z^{j_r})$ of $(\alpha_j z^j)$. To simplify the reasoning in the following, we assume that $(\alpha_j z^j)$ itself is a basic sequence in E'.

III. We claim the existence of a null sequence (λ_j) such that the sequence z, defined by

$$(*) z_k = \lambda_j \alpha_j z_k^j \text{for } k_{j-1} < k \le k_j ,$$

is not an element of S(E').

Let G denote the subspace of E' consisting of all sequences

$$z = \sum_{j=1}^{\infty} \lambda_j \alpha_j z^j ,$$

where (λ_j) is in c_0 and the series converges in norm. Define a linear operator $\varphi \colon G \to c_0$ by setting

$$\varphi(z) = \varphi\left(\sum_{j=1}^{\infty} \lambda_j \alpha_j z^j\right) = (\lambda_j).$$

 φ is well defined since $(\alpha_j z^j)$ is a basic sequence by assumption. We prove that φ is continuous. Let $z \in G$, $z = \sum \lambda_i \alpha_i z^j$. Then

$$\begin{split} |\lambda_j| &= ||\lambda_j \alpha_j z^j|| = \left\| \sum_{i=1}^j \lambda_i \alpha_i z^i - \sum_{i=1}^{j-1} \lambda_i \alpha_i z^i \right\| \\ &= \left\| P_{k_i} z - P_{k_{i-1}} z \right\| \le 2||z|| \;, \end{split}$$

the latter in view of the monotonicity of the norm on E (and thus on E'). This proves that φ is continuous.

Let \overline{G} be the norm closure of G in E'. Then φ extends to a continuous, linear operator $\overline{\varphi} \colon \overline{G} \to c_0$. Let $z \in \overline{G}$, then $z = \sum \lambda_j \alpha_j z^j$ for some sequence (λ_j) , since $(\alpha_j z^j)$ is a basic sequence. But notice that $\overline{\varphi}(z) = (\lambda_j)$ by a K-space argument. So actually (λ_j) is in c_0 , hence $z \in G$, proving $G = \overline{G}$.

Notice that φ is a continuous injection. This proves that φ is not surjective. For supposing it were, it would be a homeomorphism by the open mapping theorem, i.e. we would have $G \approx c_0$. But this is absurd, since no separable dual space may contain a copy of c_0 . So φ is not surjective. Let (λ_j) be any null sequence which is not in the range of φ . We prove that z, defined by (*), is not in S(E'). Indeed, $z \in S(E')$ would imply $||z - P_{k_j}z|| \to 0$ $(j \to \infty)$. But note that

$$P_{k_j}z = \sum_{i=1}^j \lambda_i \alpha_i z^i ,$$

hence z would be in G, which was excluded. This ends step III.

IV. We prove that $(P_k z)$ is $\sigma(E', F+M)$ -convergent with limit z. Indeed, let $x \in F+M$, $k \in \mathbb{N}$, $k_{i-1} < k \le k_i$. Then we have

$$\langle x, P_k z \rangle = \sum_{i=1}^{j-1} \lambda_i \alpha_i \langle x, z^i \rangle + \lambda_j \alpha_j \langle x, P_k z^j \rangle.$$

Here the first summand converges $(k \to \infty, k_{j-1} < k \le k_j)$ since $\langle x, z^i \rangle \to 0$ and $(\alpha_j) \in l^1$. But the second summand converges as well in view of $\lambda_j \to 0$ $(k \to \infty, k_{j-1} < k \le k_j)$ and

$$|\alpha_i \langle x, P_k z^j \rangle| = |\langle P_k x, \alpha_i z^j \rangle| \le ||P_k x|| \, ||\alpha_i z^j|| \le ||x||.$$

In view of $F^{\beta} = E'$ this implies $z \in E'$ and so $P_k z \to z$ in $\sigma(E', F + M)$.

Now observe that the operators Q_r are $\sigma(E', F+M)$ -continuous, so $Q_r(P_k z) \to Q_r z$ $(k \to \infty)$, proving $P_r z = Q_r z$, hence $z \in S(E')$. But this contradicts step III and therefore ends the proof. \square

In the case where S(E')=E', i.e. when E' has sectional convergence, the proof may be simplified. Here we have $M=\{0\}$, $Q_n=P_n$. This yields the following.

Corollary 1. Let E be a BK-AK-space such that E' is as well BK-AK. Let F be a subspace of E'' containing Φ and satisfying $F^{\beta} = E^{\beta}$ (= E'). Then $\sigma(E', F)$ and $\sigma(E', \overline{F})$ have the same convergent sequences. \square

SPACES WITH THE WILANSKY PROPERTY

An FK-space E is said to have the Wilansky property if every subspace F of E satisfying $F^{\beta} = E^{\beta}$ is barrelled in E (see $[B_2]$). In $[B_2]$ and [S] it is proved that every BK-AK-space E whose dual E' is as well a BK-AK-space has the Wilansky property. Here we obtain:

Theorem 2. Let E be a BK-AK-space such that S(E') has a separable complement L in E'. Let G be any FK-space having $E \subset G \subset E^{\beta\beta}$. Then G has the Wilansky property if and only if E is of finite codimension in G.

Proof. Necessity. Suppose E is of infinite codimension in G. Let (y^n) be a linearly independent sequence in $G \setminus E$. Since $E^\beta = G^\beta$, E is barrelled as a subspace of G, hence is closed in G. But now $F = E + \ln\{y^n \colon n \in \mathbb{N}\}$ is a subspace of G having $F^\beta = G^\beta$ which is not barrelled. Indeed, we may define a sequence (f_n) in G' such that f_n is 0 on $E + \ln\{y^1, \ldots, y^{n-1}\}$ and satisfies $f_n(y^n) = n|y^n|$ (for some continuous seminorm $|\cdot|$ on G). Then $f_n \to 0$, $\sigma(G', F)$, but (f_n) is not bounded in G'.

Sufficiency. Let F be a subspace of G with $F^{\beta} = G^{\beta}$. We may assume that F contains Φ (see [B₂, Theorem 1]).

Let U be a barrel in F. Since $M \cap E = \{0\}$, $M = S(E')^{\perp}$, the space $F \cap M$ is finite dimensional. Let S be some topological complement of $F \cap M$ in M. Let B denote the unit ball in S. Note that B is $\sigma(E'', E')$ -compact, since the unit ball in $M \approx L'$ is weak * compact and S is of finite codimension in M. Now let V = U + B. Then V^0 , the $\langle E'', E' \rangle$ -polar of V, is $\sigma(E', F + M)$ -bounded, since V spans F + M. By Theorem 1, $\sigma(E', F + M)$ -bounded sets are norm bounded in E', so that V^0 is norm bounded in E'. Hence V^{00} is a norm neighbourhood of V is norm bounded in V. We end the proof by showing $V^{00} \cap F \subset U$. By the definition of V, we have $V^{00} = \overline{U} + B$, the closure being taken in $\sigma(E'', E')$, since V is $\sigma(E'', E')$ -compact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V0 is V1. Since V2 is norm neighbourhood of V3. Since V3 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V4. Since V5 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V5 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V5 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V5 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V5 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V5 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V5 is norm pact. But $V^{00} \cap F = \overline{U} \cap F$ in view of V6 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ in view of V6 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ in view of V6 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 6 in view of $V^{00} \cap F = \overline{U} \cap F$ 7 in view of $V^{00} \cap F = \overline{U} \cap F$ 8 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 9 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 9 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 9 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 9 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 9 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 9 is norm pack. But $V^{00} \cap F = \overline{U} \cap F$ 9 is norm pack. But $V^{00} \cap F = \overline{U$

Corollary 2. [B_2 , § 6]. c and cs have the Wilansky property. \Box

More generally, a BK-AK-space E has the Wilansky property if S(E') is of finite codimension in E', and the same is true for any G having $E \subset G \subset E^{\beta\beta}$ such that E is of finite codimension in G. In a forthcoming paper [NS], we use this fact to prove that for every invertible permanent triangular matrix A whose inverse A^{-1} is a bidiagonal matrix, the convergence domain c_A has the Wilansky property.

Remark. In Theorems 1,2, the assumption that E has separable dual may be replaced by any condition ensuring that c_0 does not embed into E'. See for instance [Kw].

SEPARABLE WILANSKY PROPERTY

It is clear from Theorem 2 that the bidual E'' of a BK-AK-space E whose dual E' is as well BK-AK does not have the Wilansky property unless E has finite codimension in E''. Nevertheless, the bidual space E'' satisfies some weaker Wilansky type property, which might be called the separable Wilansky property.

Theorem 3. Let E be a solid BK-AK-space whose dual E' is as well BK-AK. Let D be a norm dense subspace of E'' containing Φ and satisfying $D^{\beta} = E^{\beta}$ (= E'). Then every separable FK-space F which contains D, actually contains E''.

Proof. Let $x \in E''$ be fixed. Since D is a norm dense in E'', it is also $\tau(E'', E')$ -sequentially dense in E'', i.e. there exists a sequence (x^n) in D which converges to x in $\tau(E'', E')$. We claim that $\tau(E'', E')|D = \tau(D, E')$. Indeed, by Theorem 1, $\sigma(E', D)$ and $\sigma(E', E'')$ have the same convergent

Indeed, by Theorem 1, $\sigma(E', D)$ and $\sigma(E', E'')$ have the same convergent sequences, hence the same compact sets [W, p. 252]. This implies $\tau(E'', E')|D = \tau(D, E')$.

Consequently, the sequence (x^n) is Cauchy in $(D, \tau(D, E'))$. We prove that the inclusion mapping $i: (D, \tau(D, E')) \to F$ is continuous. This is a consequence of Kalton's closed graph theorem (see [BK₂, Theorem 5]), for $\sigma(E', D)$ is sequentially complete. Indeed, since $\sigma(E', D)$ and $\sigma(E', E'')$ have the same convergent sequences, they also have the same Cauchy sequences. But $\sigma(E', E'')$ is sequentially complete as a consequence of the fact that E, and hence $E' = E^{\alpha}$, is solid. This proves that $\sigma(E', D)$ is sequentially complete.

Since $i: (D, \tau(D, D^{\beta})) \to F$ is continuous, the sequence (x^n) is Cauchy in F, and hence converges to some $\overline{x} \in F$. From K-space reasons, we have $x = \overline{x}$, proving $x \in F$. \square

Certainly, in Theorem 3, the solidity of the space E may be replaced by the condition that $\sigma(E', E'')$ is sequentially complete.

Corollary 3. (Compare $[BK_1, Theorem 3]$.) Let F be a separable FK-space containing Φ and suppose $F \cap l^{\infty}$ is norm dense in l^{∞} . Then $l^{\infty} \subset F$.

Proof. This follows from Theorem 3 and the fact that every norm dense subspace D of l^{∞} satisfies $D^{\beta} = l^{1}$ (see [W, Lemma 16.3.3]). \square

The result of Bennett and Kalton has been generalized by Snyder [Sn] to a nonseparable version. He proves that every FK-space F containing Φ and satisfying $F + c_0 = l^{\infty}$ must have $F = l^{\infty}$.

SCARCE COPIES

The concept of scarce copies of sequence spaces has been introduced by Bennett $[B_1]$. He proves that every scarce copy of ω and l^1 is barrelled, but that all other standard sequence spaces do not have this property. For instance, c_0 does not have any barrelled scarce copy at all (see $[B_1]$ for details). Here we obtain another negative result on the barrelledness of scarce copies.

Theorem 4. Let E be a FK-AB-space contained in l^{∞} such that $E^{\gamma} \subset bs$. Then E does not have any barrelled scarce copy.

Proof. Suppose $\Sigma(E, r)$ is a barrelled scarce copy of E. This implies $\Sigma(E, r)^{\beta} \subset E^f = E^{\gamma}$, the latter since E has AB (see [W, p. 167]). Therefore $\Sigma(E, r)^{\beta} \subset bs$.

We prove that $\Sigma(c_0\,,r)$ is a barrelled scarce copy of c_0 , thus obtaining a contradiction, since c_0 has no barrelled scarce copies. Since c_0 has the Wilansky property, barrelledness of $\Sigma(c_0\,,r)$ will be a consequence of $\Sigma(c_0\,,r)^{\beta}\subset l^1$. So let $y\not\in l^1$. Since $c_0^{\gamma}=l^1$, there exists $x\in c_0$ such that $xy\not\in bs$, hence $xy\not\in\Sigma(E\,,r)^{\beta}$. Let $z\in\Sigma(E\,,r)$ be chosen with $xyz\not\in cs$. By the definition of $\Sigma(E\,,r)$, there exist $z^1\,,\ldots\,,z^n\in\sigma(E\,,r)$ having $z=z^1+\cdots+z^n$. This implies $xyz^i\not\in cs$ for some i. We claim that $xz^i\in\sigma(c_0\,,r)\subset\Sigma(c_0\,,r)$. Since $z^i\in E\subset l^\infty$, we have $xz^i\in c_0$. On the other hand,

$$c_n(xz^i) \le c_n(z^i) \le r_n$$

for every n implies $xz^i \in \sigma(c_0^-,r)$. This proves $y \notin \Sigma(c_0^-,r)^\beta$. \square

REFERENCES

- [B₁] G. Bennett, Some inclusion theorems for sequence spaces, Pacific J. Math. 46 (1973), 17-30.
- $[B_2]$ _____, Sequence spaces with small β -duals, Math. Z. 194 (1987), 321-329.
- [BK_1] G. Bennett and N. J. Kalton, Addendum to "FK-spaces containing c_0 ", Duke Math. J. 39 (1972), 819-821.
- [BK₂] ____, Inclusion theorems for K-spaces, Canad. J.Math. 25 (1973), 511-524.
- [Kw] S. Kwapien, On Banach spaces containing c_0 , Studia Math. 52 (1974), 187–188.
- [NS] D. Noll and W. Stadler, Zerlegung von Wachstumsbereichen und Wirkfeldern für die Verfahren bewichteter Mittel, Manuscripta Math. 60 (1988), 197-209.
- [P] A. Pelczyński, A note on the paper of I. Singer: "Basic sequences and reflexivity in Banach spaces", Studia Math. 21 (1962), 371-374.
- [Sn] A. K. Snyder, A property of the embedding of c_0 in l_{∞} , Proc. Amer. Math. Soc. 97 (1986), 59-60.

[S] W. Stadler, Zu einer Frage von Wilansky, Arch. Math. 48 (1987), 149-152.

[W] A. Wilansky, Summability through functional analysis, North-Holland, New York, 1984.

Universität Stuttgart, Mathematisches Institut B, Pfaffenwaldring, 7000 Stuttgart 80, BRD

Universität Stuttgart, Mathematisches Institut A, Pfaffenwaldring, 7000 Stuttgart 80, BRD