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THE WILANSKY PROPERTY

DOMINIKUS NOLL AND WOLFGANG STADLER

(Communicated by John B. Conway)

Abstract. We prove that if E is a BK- AK-space whose dual E' as well

is BK- AK , then o(E',F) and o(E',F) have the same convergent sequences

whenever F is a subspace of E" containing 4> and satisfying F^ = E& . This

extends a result due to Bennett [B 2 ] and the second author [S]. We provide new

examples of 5A"-spaces having the Wilansky property. We show that the bidual

E" of a solid BK- AK-space E whose dual as well is BK- AK satisfies a

separable version of the Wilansky property. This extends a theorem of Bennett

and Kalton, who proved that l°° has the separable Wilansky property.

Introduction

G. Bennett [B 2 ] and the second author [S] have independently obtained a

positive answer to the following question of Wilansky: Is c0 the only FK-space,

densely containing <P, whose y?-dual is /'? Both approaches are essentially

based on a characterization of the barrelledness of certain sequence spaces by

means of their /?-duals. In the present paper we extend the Bennett/Stadler

result, providing more examples of 5Ä^-spaces having the Wilansky property

(in the sense introduced in [B2 ]).

Let us explain the situation by considering a typical example. The classical

sliding hump argument (Toeplitz/Schur) asserts that o(l  , c0)-bounded sets are

Unbounded. The Bennett/Stadler result generalizes this to the extent that still

o(l ,F)-bounded sets are || ||,-bounded, when <I> c E c c0 and E = I .

The latter may be expressed equivalently by saying that every subspace E of

c0 containing <P and having E — /' is barrelled. Finally, our present attempt

shows that a(l ,F)-bounded sets are || ||,-bounded when O c E c l°° and

E =1 . Actually, we prove a little more. We show that a(l ,E) and o(l ,E)

have the same convergent sequences in case 0 c E c l°° and E — I . This

extension requires a modified technique, since both the approaches in [B 2 ] and
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[ S ] make use of the sectional convergence in E (when £cc„), and the latter

is no longer available (when E c l°° ).

We obtain new classes of BK-spaces having the Wilansky property. For

instance, we prove that every BK- AK-space E, such that S(E') is separably

complemented in E', has the Wilansky property. Here S(E') denotes the space

of all y e E' which have sectional convergence with respect to the norm.

We prove that the bidual E" of a solid BK- ^^T-space E whose dual É

is as well BK- AK has the following separable Wilansky type property: If D

is a norm dense subspace of E" containing O and having Zr = F/ (= E1),

then every separable FA"-space F containing D must actually contain E".

When applied to the case E = c0, this provides a result of Bennett and Kalton

[BK , , W, p. 259].

Notation. The sections of a sequence x eœ are denoted by

v=E x¡e

where e' are the unit vectors. If Pnx —► x (n —► oo), then x is said to have

sectional convergence. If F is a BK -space, then S(E) denotes the space of all

x e E having sectional convergence with respect to the norm on E.

Concerning all other notions from sequence space theory, we refer to the

book [W].

The main theorem

This section presents our fundamental result.

Theorem 1. Let E be a BK- AK-space such that S(E') is complemented in E1

with separable complement L. Let M = S(E')    be the annihilator of S(E')

in E". Let F be any subspace of E     containing <P and suppose F   = E

(= E1).   Then o(E' ,F + M) and o(E' ,F + M) have the same convergent

sequences.

Proof. We need some preparations. We may assume that E has a monotone

norm (see [W, p. 104]). Let px: E' —* S(E'), p2: E' —► L be the projection

operators corresponding with the decomposition É = S(E') © L. Notice that

E" = S(E') © L , L' = S(E') = M. We define norm continuous linear

operators Qn : E' —► E', n e N, by

Then we have

Q„y = pn°ply+p2y-

\\y-Q„y\\ = \\ply-P„°ply\\^o.

We have to prove that o(E , F + Af)-convergent sequences are a(E ,F+M)-

convergent.   To this end, it suffices to prove that every  o(E', F + M)-null
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sequence is bounded in norm. Indeed, suppose this has been proved for a

o(E',F + Af)-null sequence (y"), \\yn\\ < K, say. Then, for x e F fixed and

£ > 0 choose x e F having \\x - x\\ < e/K. Then

\(x,yn)\<K\\x-x\\ + \(x,yn)\<e

for n > n(e).

Let (y") be a o(E' ,F + A/)-null sequence and assume it is not bounded in

norm, ||>>"|| > «2" , say. Let v" = y"/n .

I. There exist strictly increasing sequences (k}), (« ) of integers such that

the following conditions (1) and (2) are satisfied:

(1) \\Qk¡_vn¡\\ <*~J,      j=l,2,...,

(2) \\v"> -Qkv"'\\<2-J,       ; = 1,2,....

Suppose kx , ... ,kj and nx,... ,n, have already been defined in accor-

dance with (1) and (2). We claim that \\Qk v"\\ -> 0 (n -> oo). Since (v") is

o(E', F + M)-null, (p2y") is bounded for o(L , M), hence is norm bounded,

hence ||p2v"ll —► 0. On the other hand, y" — pxy" + p2yn implies that (pxyn)

is o(E' ,F + M)-bounded, hence (pxv") is o(E' ,F + A/")-null, hence is co-

ordinatewise null in view of O c F. Clearly this implies |t-r\i*iw"|| —► 0,

proving our claim. But now it is clear that a choice of n+, > « satisfying ( 1 )

is possible.

Next observe that \\vn'*x - Qkv"J*' \\ —► 0 (k -* oo). This permits a choice of

kj+x > kj in accordance with (2).

II. Let zj = Qkvn' - Qkj_v"' - PkPxv"J - h^Py ' and let aJ = ^ll^ll •

Then (a.) is an / -sequence by (1), (2). Observe that ajzJ —> 0 with respect

to o(E', F + M), but \\ajzJ\\ = 1 . Therefore, a result of Pelczyñski [P] guar-

antees the existence of a basic subsequence (a z?') of (a z7). To simplify

the reasoning in the following, we assume that (ctjZ1) itself is a basic sequence

in É.

III. We claim the existence of a null sequence (A.) such that the sequence

z, defined by

( * ) zk= Á.jajzJk    for kj_ x<k<kr

is not an element of S(E ).

Let G denote the subspace of E' consisting of all sequences

°°

z = y^/LaV ,
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where (A) is in cQ and the series converges in norm. Define a linear operator

(¡>: G -+ c0 by setting

<p(z) = <pljrAjajzl\ =(Xj).

tp is well defined since (oijZ1) is a basic sequence by assumption. We prove

that (p is continuous. Let z e G, z = V'Xiaz}. Then
1 J

j 7-1

\Xj\ = \\kjajZi\\ =
i=\ ;=1

= \\PkZ-Pk,_A\<i\\A\,"j-l

the latter in view of the monotonicity of the norm on E (and thus on É ).

This proves that q> is continuous.

Let G be the norm closure of G in E'. Then q> extends to a continuous,

linear operator !j>; G —> c0. Let z e G, then z = Y^^pi7? f°r some sequence

(A), since (ajzJ) is a basic sequence. But notice that lp(z) — (A) by a ÄT-space

argument. So actually (A ) is in c0 , hence z e G, proving G = G.

Notice that q> is a continuous injection. This proves that t? is not surjective.

For supposing it were, it would be a homeomorphism by the open mapping

theorem, i.e. we would have G « c0. But this is absurd, since no separable

dual space may contain a copy of c0. So <p is not surjective. Let (A) be any

null sequence which is not in the range of <p . We prove that z , defined by (*),

is not in S(E') . Indeed, z e S(E') would imply \\z - Pk z\\ -* 0 (/ —► oo).

But note that

pklz = Y,xiaiz' >
i=\

hence z would be in G, which was excluded. This ends step III.

IV. We prove that (Pkz) is o(É ,F + A/)-convergent with limit z. Indeed,

let x e F + M, k e N, fc._, < k < kj . Then we have

(x >pkz) = H-W* » z'> + *jaj(x ,PkÀ-
(=1

Here the first summand converges (k —> oo ,k:_x < k < kj) since (x , z') —► 0

and (ct.) e / . But the second summand converges as well in view of A —> 0

(k —* oo ,kj_x < k < kj) and

|a,.<x, V>| = \{Pkx,aj¿)\ < UV»»«/!! ^ IWI-

In view of F^ = F' this implies z e E' and so F^z —> z in ct(F' ,F + M).
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Now observe that the operators Qr are o(E', F+M)-continuous, so Qr(Pkz) —►

Qrz (k —► oo), proving Prz = Qrz, hence z e S(E'). But this contradicts step

III and therefore ends the proof.   D

In the case where S(E') = E', i.e. when E' has sectional convergence, the

proof may be simplified. Here we have M = {0}, Qn = P„. This yields the

following.

Corollary 1. Let E be a BK- AK-space such that E' is as well BK-AK. Let

F be a subspace of E" containing <P and satisfying Fp = E (— E1). Then

o(E' ,F) and o(É ,F) have the same convergent sequences.    D

Spaces with the Wilansky property

An FA-space E is said to have the Wilansky property if every subspace F

of E satisfying Fß — Ep is barrelled in E (see [B2]). In [B2] and [S] it is

proved that every BK- AK-space E whose dual E' is as well a BK- ^ÄT-space

has the Wilansky property. Here we obtain:

Theorem 2. Let E be a BK-AK-space such that S(E') has a separable com-

plement L in E'. Let G be any FK-space having E c G c F . Then G

has the Wilansky property if and only if E is of finite codimension in G.

Proof. Necessity. Suppose E is of infinite codimension in G. Let (v") be a

linearly independent sequence in C7\F. Since Ep = Gß , E is barrelled as a

subspace of G, hence is closed in G. But now F = E + lin{yn: n e N} is a

subspace of G having F = G which is not barrelled. Indeed, we may define

a sequence (fn) in G' suchthat fn isOon F + lin-fy1 , ... ,y"~ } and satisfies

fn(y") = n\y"\ (for some continuous seminorm | • | on G). Then fn —* 0,

o(G' ,F), but (fn) is not bounded in G'.

Sufficiency. Let F be a subspace of G with Fp = G . We may assume that

F contains <P (see [B2, Theorem 1]).

Let U be a barrel in F. Since MnE = {0} , M = S(E')± , the space FnM

is finite dimensional. Let S be some topological complement of FnM in M.

Let B denote the unit ball in S. Note that B is o(E" ,F')-compact, since the

unit ball in M ta L is weak * compact and S is of finite codimension in M.

Now let V = U + B. Then Vo, the (E11 ,F')-polar of V, is o(É ,F + M)-

bounded, since V spans F + M. By Theorem 1, o(E' ,F + M)-bounded sets

are norm bounded in E', so that V is norm bounded in É . Hence V is

a norm neighbourhood of 0 in E", hence V00nf isa norm neighbourhood

of 0 in F, since G (and hence F ) must have the topology induced by E" .

We end the proof by showing V n F c U. By the definition of V, we have

V00 — (J + B, the closure being taken in o(E" ,É), since B is o(E" ,E')-

compact. But V00 n F = Un F in view of B n F = {0}. Since F has only

finitely many dimensions "outside E ", we deduce that U n F = U, which ends

the proof of Theorem 2.    D
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Corollary 2. [ B2, § 6 ].  c and cs have the Wilansky property.    D

More generally, a BK- AK-space E has the Wilansky property if S(E') is of

finite codimension in E1, and the same is true for any G having E c G c E

such that E is of finite codimension in G. In a forthcoming paper [NS], we

use this fact to prove that for every invertible permanent triangular matrix A

whose inverse A~ is a bidiagonal matrix, the convergence domain cA has the

Wilansky property.

Remark. In Theorems 1,2, the assumption that E has separable dual may be

replaced by any condition ensuring that cQ does not embed into É . See for

instance [Kw].

Separable Wilansky property

It is clear from Theorem 2 that the bidual E" of a BK- AK-space E whose

dual E' is as well BK- AK does not have the Wilansky property unless E has

finite codimension in E". Nevertheless, the bidual space E" satisfies some

weaker Wilansky type property, which might be called the separable Wilansky

property.

Theorem 3. Let E be a solid BK- AK-space whose dual E1 is as well BK- AK.

Let D be a norm dense subspace of E" containing <I> and satisfying Zr =

E (= E1). Then every separable FK-space F which contains D, actually

contains E".

Proof. Let x e E" be fixed. Since D is a norm dense in E", it is also

x(E" ,F')-sequentially dense in E", i.e. there exists a sequence (x") in D

which converges to jc in x(E" ,E'). We claim that x(E" ,E')\D = x(D ,E').

Indeed, by Theorem 1, o(E' ,D) and o(E' ,E") have the same convergent

sequences, hence the same compact sets [W, p. 252]. This implies x(E" ,E')\D

= x(D,E').

Consequently, the sequence (xn) is Cauchy in (D ,x(D ,E')). We prove

that the inclusion mapping i: (D ,x(D ,E )) —> F is continuous. This is a

consequence of Kalton's closed graph theorem (see [BK2, Theorem 5]), for

o(E ,D) is sequentially complete. Indeed, since o(E' ,D) and a(E ,E ) have

the same convergent sequences, they also have the same Cauchy sequences. But

o(E' ,E") is sequentially complete as a consequence of the fact that E, and

hence E' = E" , is solid. This proves that o(E' ,D) is sequentially complete.

Since i: (D ,x(D ,Z> )) —► F is continuous, the sequence (x") is Cauchy

in F, and hence converges to some x e F. From AT-space reasons, we have

x = x, proving x e F .   D

Certainly, in Theorem 3, the solidity of the space E may be replaced by the

condition that o(E' ,E") is sequentially complete.

Corollary 3. (Compare [BKj, Theorem 3].) Let F be a separable FK-space

containing <P and suppose F n l°° is norm dense in l°° . Then l°° c F.
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Proof. This follows from Theorem 3 and the fact that every norm dense sub-

space D of /°° satisfies Dp = /'  (see [W, Lemma 16.3.3]).   D

The result of Bennett and Kalton has been generalized by Snyder [Sn] to a

nonseparable version. He proves that every FA-space F containing cp and

satisfying F + c0 = l°° must have F = l°° .

Scarce copies

The concept of scarce copies of sequence spaces has been introduced by

Bennett [B, ]. He proves that every scarce copy of to and / is barrelled, but

that all other standard sequence spaces do not have this property. For instance,

c0 does not have any barrelled scarce copy at all (see [B , ] for details). Here

we obtain another negative result on the barrelledness of scarce copies.

Theorem 4. Let E be a FK- AB-space contained in l°° such that Ey c bs.

Then E does not have any barrelled scarce copy.

Proof. Suppose Z(F, r) is a barrelled scarce copy of E. This implies X(F , r)

c Ef = Ey, the latter since E has AB (see [W, p. 167]). Therefore X(F ,r)ß

c bs.
We prove that X(c0 ,r) is a barrelled scarce copy of c0, thus obtaining a

contradiction, since cQ has no barrelled scarce copies. Since c0 has the Wilan-

sky property, barrelledness of I(c0 , r) will be a consequence of Z(c0 , r) c / .

So let y & I . Since c^ = I , there exists x e c0 such that xy & bs, hence

xy £ ~L(E , ry ■ Let z e Z(£ , r) be chosen with xyz £ cs . By the definition

of Z(F , r), there exist zl , ... ,z" e a(E , r) having z = z + ■■■ + z" . This

implies xyz' g es for some /. We claim that xz' e o(cQ , r) c X(c0 , r). Since

z' e E c /°° , we have xz' e c0 . On the other hand,

cn(xz) < cn(z) < rn

for every n implies xz' e o(c0 , r). This proves y £ £(c0 , r)   .   a
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