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ON SEMISIMPLE MALCEV ALGEBRAS

ALBERTO ELDUQUE

(Communicated by Donald S. Passman)

Abstract. Let M be a finite dimensional semisimple Malcev algebra over

a perfect field of characteristic / 2,3 . Let N{M) be its /-nucleus and

J(M, M, M) the subspace spanned by its jacobians. Then it is shown that M =

N(M)® J(M,M,M), N(M) is a semisimple Lie algebra and J(M,M,M) is

a direct sum of simple non-Lie Malcev algebras.

1. Introduction

In what follows F will denote always a field of characteristic not two. A

Malcev algebra M over F is an anticommutative algebra (x = 0 Vx) satis-

fying the identity

(xz)(yt) = ((xy)z)t + ((yz)t)x + ((zt)x)y + ((tx)y)z.

Every Lie algebra is a Malcev algebra and many results for Lie algebras have

been extended to the Malcev case, see [3], [4], [5], [6], [8], [9], [13], [14], [16],

[18] and [19].

If M is a Malcev algebra and x,y, z g M, the element J(x ,y,z) = (xy)z+

(yz)x + (zx)y is called the jacobian of x,y,z. The subspace spanned by

the jacobians is denoted J(M,M,M). Then the subspace N(M) = {x G

M: J(x, M, M) = 0} is called the /-nucleus of M.

We shall need the following assertions; their proofs may be found in [16]:

Proposition 1.1. Let M be a Malcev algebra and x,y,z,t G M. Then:

(a) J(x,y,tz) + J(t,y,xz) = J(x,y,z)t + J(t,y,z)x.

(b) 2tJ(x,y ,z) - J(t,x,yz) + J(t,y ,zx) + J(t,z,xy).

(c) J(tx,y,z) = tJ(x,y,z) + J(t,y,z)x-2J(yz,t,x).

(d) If J(x,y,z) = 0 then the subalgebra generated by x,y and z is

a Lie algebra.

(e) N(M) and J(M,M, M) are ideals of M and N(M)J(M ,M,M) = 0.
(f) IfJ(x,y,M) = 0 then xy G N(M).
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For any x in the Malcev algebra M, Rx will denote the mapping y >-* yx .

If H is a nilpotent subalgebra and M is finite dimensional, M can be de-

composed, as in the Lie case, in primary components. For algebraically closed

F, M decomposes as a direct sum of root spaces with respect to the set of en-

domorphisms {Rh: h G //}. If MQH — H, H is said to be a Cartan subalgebra.

The existence of Cartan subalgebras is guaranteed for solvable Malcev algebras

([5]) and for infinite F ([13]).

Proposition 1.2. Let M be a finite dimensional Malcev algebra over F ,F an

algebraically closed field (of characteristic not two). Let H be a nilpotent subal-

gebra of M and M = ©((€<p M(i the corresponding decomposition in root spaces.

Then:

(a) MnMßCMn+ß ifatß.

(b) (Mn)2 ç M2n + M_a .

(c) J(M0,M0,Mn) = Ó'ifa¿0.

(d) J(M0,Mn,Mn)CM_n.

(e) J(M0,mI,M¡) = Q ifa^ß.

(f) J(Mn,Mß,M„) = Oifa^ß^y^a.

(g) J(Mn,Mn,Mß) = 0 ifß^0,±a.

(h)   J(Mn,M„,M_it)CMit.

(i)   J(M(t,Mti,Ma)CM0.

Proof, (a) to (g) may be found in [2] and [13].

For (h), if a — 0 it is clear, if a / 0 take h G H ,aa,baG M and a_n G

M_it. Then, by 1.1 (c) J(ah ,\ ,a_J = aj(h ,bn ,a"a) + J(a",bn ,a_fh -

2J(bia_ii,aa,h) = J(aa,brt,a_Jh. So J(aa ,bn,a_a)(Rh - a(h)l)n =

J(ait(Rh -a(h)l)" ,bn ,a_J = 0 for large enough n .

For (i), first notice that J{Mn,Mn,Mn) ç (Mn)2Mn ç M3n + MQ , so if the

characteristic is 3 we are done. In other case take aa ,bn,caG Mn and h e H.

By 1.1 (c) J(a h,b ,c ) = a J(h,b ,c ) + J(a ,b ,c)h - 2J(b c ,a ,h) =

aj(h , bn, cit) + J(aty, bn , cjh g J(an, bn, cjh + M0 . Hence, for large enough

n, J(an,bti,cit)(Rh-a(h)l)n G MQ, so J(an,ba,cJ G Mn + MQ. Then

J(Mit, Mn ,Mn)C (M3n + M0) n (M + M0) = M0 .

Every simple Malcev algebra is either a Lie algebra or a seven dimensional

algebra over its centroid, obtained as the set of elements of trace 0 of a Cayley-

Dickson algebra under commutation (see [13]). In any finite dimensional Mal-

cev algebra M, the largest solvable ideal will be denoted by R(M). If R(M) =

0, M is said to be semisimple. In the characteristic 0 case any semisimple Mal-

cev algebra is a direct sum of simple algebras ([13, Theorem 8]). Of course, this

is not valid for prime characteristic since it does not work even for Lie algebras.

If the characteristic is 3, Filippov proved in [11] that any semisimple Malcev

algebra is a Lie algebra.

The aim of this paper is to show that, at least, the 'non-Lie part' of a semisim-

ple Malcev algebra over a perfect field is a direct sum of simple non-Lie algebras,
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and that M decomposes as a 'Lie part' and a 'non-Lie part'. More precisely

the following result will be proved:

'Any finite dimensional semisimple Malcev algebra over a perfect field decom-

poses as

M = N(M)®J(M ,M,M);

N(M) is a semisimple Lie algebra and J(M, M, M) is a direct sum of simple

non-Lie Malcev algebras'.

This will be done in Section 4. In Sections 2 and 3 we shall study Malcev al-

gebras with a trivial ./-nucleus and obtain some results needed for the Theorem

above.

Our results will cover some of the results in [7], where Malcev algebras of

prime characteristic have been studied following the ideas related to restricted

Lie algebras. We will see in the paper that the restrictions these ideas impose

on the Malcev algebras are not necessary.

All the algebras considered from now on will be supposed to be finite dimen-

sional.

2. Malcev algebras with trivial L-nucleus

In this section, F will denote an algebraically closed field of characteristic

not two. The only, up to isomorphism, simple non-Lie Malcev algebra over F

will be denoted by C0 .

Let M be a finite dimensional Malcev algebra over F with N(M) = 0 (so

actually the characteristic of F is not 3 [10]). Let H be a Cartan subalgebra of

M and M = ©(ie<1) M(i be the corresponding root space decomposition. Then:

Proposition 2.1.

(a) If a G 0 then -a G O.

(b) (Mn)2 C M_n for all aG<&.

(c) M'tMß=0 ifß^0,±a.

(d) H is abelian and for all x ,y in H ,Rx and Rv commute.

(e) Each a G O is a linear function on H.

Proof. For (a) let us suppose that Mn ± 0 but M_n = 0. Then by 1.2 (c), (d)

and (e) we have J(H,Mn,M) = 0,"so by 1.1 f) Ma = HMn ç N(M) = 0,

a contradiction.

Assertions (b) and (c) may be found in [10, proof of Theorem 3.5].

For (d) notice that J(H,H,Mn) = 0 and J(H,H,H)Mrt = 0, because of

1.1 (b). Hence J(H,H,H) is an ideal of M which annihilates 0( ,0Mit. But

H is nilpotent so, if J(H ,H ,H) ¿ 0, there is an element 0 ¿ h G J(H,//,//)

such that h H = 0. Then h M = 0 and h G N(M) = 0, a contradiction. We

therefore have J(H,H,M) = 0, thus H2 = 0 and [Rx,Ry] = 0 for all x,y

in H (this is also proved in [10], but the proof above is easier).

Assertion (e) follows easily.
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For a G O - 0 let us consider the subspace Sa = MnM_a ® Ma ® M_a ;

the Proposition above shows that S" is an ideal of M and that SaSß = 0 if

ß^0,±a.

Let us take a system of representatives 0+ of the sets {a, -a} with 0 ^

a g <P and form the subalgebra H„€<j>+ $" ■

Proposition 2.2. The sum 2ae<j>+ $" 's direct.

Proof. Let a,ßx, ... ,ßrG®+ and x e 5a n (Sßl +■■■ + Sß'). Then x gH

so  J(x,M ,Mf) = 0  if either p = 0,  v = 0 ot p ^ v .   Now, if p /

0, J{x,MM,Mlt) ç M_finS" n(Sßl + --- + Sßr) ç M_ß n// = 0. Hence

J(x,M,M) = 0 and x = 0.

Now, if we take a complementary subspace //' in H to ®ag(t+A/ajW_(i we

have the decomposition

M = //'

Let us study the ideals Sa .

Proposition 2.3. If a G <I>+ , i/ze« a(M(Af_fi) ^ 0, the solvable radical R(Sa) is

the unique maximal ideal of S*, S"/R(Sa) is, therefore, simple, and R(Sa) is

nilpotent.

Proof. Let us suppose that a(MaM_n) = 0. If xa G Ma , u G H and h G H

with a(h) ,¿ 0, then J(h,u,xn) = 0 so, by 1.1 d), the subalgebra T generated

by {h,u,xa) is a Lie algebra and its corresponding root space decomposition

with respect to Rh is T = T0 © Ta ® T_a. Then (uxa)xa G T2a = 0, so

H(Rxf = 0. Hence M_n(Rxf = 0 and Ma(Rxf = 0.
We therefore have that for all x G M M    U M U M    ,RV   is nilpotent.

a      —a a — a '      x„ r

Because of [18, Corollary 1], Sa is nilpotent.

Let x = xn + x  + x     e S1" be a nonzero element with xS" = 0 where
0 n —a

xn G M M    , x,    G M,   . Then xnSa = x S" = x   Sa = 0, so xñM = 0
0 n      —ft '       ±a ±(i 0 a —a ' 0

and x0 e N(M) = 0. Without loss of generality we may suppose that xa ^

0.   Now J(xn,M,M) = J(xn,H,MJ because of 1.2.   But if h G H and

ya e M,t >then (h(xn + y,Mxa + ^„) = 0 so (Ä*cX = ~i.hya)xa = ° and

J(xa,h,yn) - (xnh)ya + (hyn)xa + (yaxa)h - 0. Hence xa G N(M) = 0, a

contradiction which proves that a(MaM_a) ^ 0.

This implies that (Sa)2 = S" so 5"' is not solvable. If / is an ideal of Sa

then / is (M M )-invariant, so I = I C\(M M )®lr\M®InM .If

a(I n(M M )) é 0, then M + M C I and / = Sa. In other case / is

shown to be nilpotent as above and the remaining assertions of the Proposition

follow.

Corollary 2.4 ([10]). // M is solvable then N(M) ¿0.
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The next Lemma is known, it follows from some deep results of Lie theory

(see [21]). We include a proof for completeness:

Lemma 2.5. Let L be a simple Lie algebra with an abelian Cartan subalgebra

H such that the root space decomposition is L = H®La® L_a and a is linear

on H. Then L is isomorphic to sl(2, F) (the Lie algebra of traceless 2x2

matrices under commutation).

Proof. Let T = Kera©(Kera)LQ©(Kera)L_Q . T is obviously //-invariant.

Now, let 0 jí h € Kera,0 ^ x e La  and 0 ^ y G L_a  and take  m

such that yx = y(Rh){m~l) ¿ 0, yxh = 0. Then ((hx)y)yx = ((hx)yx)y =

((hyx)x)y = 0 because H2 = (L±n)2 = 0, so (hx)y G Kera. We therefore

have ((Kera)Ln)L_n ç Kera. Hence T is an ideal of L so T = 0 and H

has dimension 1.

Let us take now x G Lit, ye L_n with xy # 0. For all z ^ 0 in La,

(zy)x = z(yx) ^ 0, so the mapping R : Ln —► H is injective. Hence La , and

L      too, has dimension 1, and the Lemma follows.

Corollary 2.6. Lé-î M be a Malcev algebra over F with N(M) = 0. Then

R(M ) is nilpotent and M ¡R(M ) is a direct sum of simple algebras isomorphic

either to sl(2,F) orto C0 .

Proposition 2.7. For any a in <t>+, N(Sn) = 0.

Proof. We can pick up an element h G MaM_a with a(h) = 1 . If 0 ^

x0-l-xt-l-x_(t G N(S"), where x0 G MtM_<t, x±a G M±n , then x0 ,xa and x_Q

are in N(S"). Then x0 6 N(M) = 0. So we may suppose that 0 # xv e /V(SQ),

xh = x   and x (Ker an M M   ) = 0.ThenxM    c N(Sa)f)H c N(M) =
(Ï ft (Y v ÍV —ft' ft — Í*    — v ' — v '

0, and if yn G Mtt, the subalgebra T generated by {h ,xa ,ya) is a Lie algebra

so x y G L, = 0. Hence x (M + M ) = 0 and x S" = 0, a contradiction

with x /z = x .

Now, if a g <t>+ and S"/R(S") = CQ then by [4] there is a subalgebra ¿" =

C0 such that 5"1 = R(S") ® A" . The same happens if Sa/R(Sa) = sl(2, F) :

Proposition 2.8. Let M be a Malcev algebra with N(M) = 0 and M/R(M) =

5/(2, F). Then there is a subalgebra S such that M = R(M) ® S.

Proof. Let H be any Cartan subalgebra of M. Then M = H © Mn® M_n .

Let T be a minimal subalgebra with the condition M = R(M) + T. Then

R(M) n T is contained in the Frattini ideal tp(T) of T (see [20, Lemma 7.1]).

But (T/(R(M)nT)) = si(2,F), so R(M)nT = <p(T) = R(T). If R(M)ilT = 0
we are done. In the other case, let h G T - <p(T) with non-nilpotent Rh . The

Fitting null component with respect to Rh , M0(h) — Fh + (M0(h) n R(M)),

is a nilpotent subalgebra of M, since R(M) is nilpotent, so it is a Cartan

subalgebra, M = M0(h) ® Mn(h) ® M_a(h) and T = TQ(h) ® Ta(h) © T_n(h).
Let B be an ideal of T such that <p(T)/B is a composition factor of T.

Then tp(T)/B is an irreducible module for T/tp(T) = sl(2,F), and since the
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only possible weight spaces that appear are 0, a, - a, and the characteristic is

^ 2, 3, there are only three possibilities (see [2] and [15]):

—A trivial module of dimension 1.

—A non-Lie Malcev module of dimension 2.

—A regular module of dimension 3.

In these three cases, the reasoning in [4, p. 182] shows that there is a subal-

gebra S of T such that T/B = (tp(T)/B) ® (S/B) = <p(T/B) © (S/B). This is
a contradiction with [20, Lemma 2.1]. Hence M = R(M) © T.

The result above was proved in [7] with more stringent conditions.

Gathering together the results in this section we get:

Theorem 2.9. Let M be a Malcev algebra over F with N(M) = 0 and let

H be any Cartan subalgebra of M.   If M = ®iie(t)Mit  is the corresponding

root space decomposition then the a 's are linear; H = 0 ; for any a ^ 0,

S" = M M    ® M © M     is an ideal and
a       —a a —a

M--

where //' ç {x e H:a(x) = 0 Va e 0+} , <S>+ is a system of representatives of

the sets {a, -a} where a G <t>-0 and each S" decomposes as Sn = R(S")®Aa,

with R(S") nilpotent and An isomorphic either to sl(2,F) orto C0.

3. Semisimple Malcev algebras with trivial 7-nucleus

In this section F will denote an algebraically closed field of prime charac-

teristic / 2,3 .

Let us recall the definition of 'quasiderivation' given by R. Block, restricted

to Malcev algebras. Given a Malcev algebra M and a linear mapping d:M —►

M, d is called a quasiderivation if [d ,Rx] ç M+ (M+ is the multiplication

algebra of M; that is, the associative subalgebra of End^M) generated by

{Rx'.x G M}). The algebra M is said to be quasidifferentiably simple if it does

not contain any proper ideal invariant under quasiderivations.

In the remainder of the section M will denote a semisimple Malcev algebra

over F with N(M) = 0 and we shall use the same notation as in the last

section with //' ç {x e H: a(x) = 0Vq£O}.

Lemma 3.1. For any x in //' and a in C>+, the restriction of Rx to Sa is a

quasiderivation of S".

Proof. Take h G M M     with a(h) = 1 , z € S" and y   e M . There is an
J ft —ft v     ' s ft ft

u  G M   with y   = u h .
ft ft * ft ft

Then J(z,ya,x) = J(z,u(h,x) = 2zJ(un,h,x) - J(z,hx,un)-

J(z, xun ,h) = -J(z, xun ,h),so [Ryn, Rx] = R(y nX) - [R(xu), Rh] + R(xu)h .

But y x,xu and (xu )h are in S", so the restriction of [/?„ ,Rr] to Sa

belongs to (Sa)+ .
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The same for y_n e M_n and, finally, if y0 e MtM_a, [RVq,RJ = 0 by

2.1 (d).

Lemma 3.2. For any aeO+, Sa is quasidifferentiably simple.

Proof. Let B be an ideal of S" , B / Sa , invariant under Rx , for all x e //'.

By the last section B is nilpotent and B is an ideal of the whole M, but M

is semisimple, so 5 = 0.

The next proposition shows that the case Aa = sl(2,F) is not possible:

Proposition 3.3. For any a e <I>+ , A" is isomorphic to C0.

Proof. Let us suppose that there is an a e 0+ with A" = 5/(2, F). Then

/?(5"') j¿ 0 since /v"(S"') = 0. By [1, Lemma 2.2] and the last lemma, any

composition factor of S" is isomorphic, as a (S")"""-module, to any minimal

ideal of S". Now, if B is a minimal ideal of Sa, then B ç R(S") and the

nilpotency of R(S") shows that BR(S") = 0. Hence B is an irreducible non-

Lie (N(Sn) = 0) Malcev module for A" S sl(2,F). By [2] the dimension

of /? is 2. But the dimension of the composition factor Sa/R(Sa) is 3, a

contradiction.

If a G 0>+, by the result above S"/R(Sa) = C0. By [4], we have that the

exact sequence of algebras and morphisms of algebras

0 - R(S") -» Sn -* S?/R(S") a* 0

splits.

Now, [1, Lemmas 3.3 and 4.1] imply that Sa = Aa®F Bn (F), for some natu-

ral number na, where Bn (F) is the //-truncated polynomial algebra

F[XX, ... ,Xn\/(XPX , ... ,Xpn), p being the characteristic of F, and A" = C0 .

We shall denote by x( the class of Xi modulo the ideal (Xx , ... ,Xpn). For

each a e <D+ we shall identify Sn with A"®F Bn (F). Let {hn, e", e2 , e3 , fí,

f2 ,f3} be a Sagle basis of A" as in [8, p. 220]"

Then H" = Fhn®F Bn(F) is a Cartan subalgebra of S" and G = ®a&0+ Ha

is an abelian subalgebra of M2. If M = M0G ® MXG is the Fitting decomposi-

tion of M with respect to G, then J(M0G, M0G, MQG) turns out to be an ideal

of M (same reasoning as in 2.1) contained in MQGnM = G. By semisimphc-

ity J(M0G,M0G,M) = J(M0G,M0G,M0G) = 0 and (MQG)2 = 0. Thus M0G

is a Cartan subalgebra of M.

The conclusion of this is that we may take the Cartan subalgebra H at the

begininning with H n S" = H" for all a e í>+ . We do so.

Let us pick elements z e //' and v e Fe" + Fe2 + Fe3 . The subalgebra

T generated by v ® 1, A" ® 1 and z is a Lie algebra and, as in 2.3, we get
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(v ® l)((v ® l)z) = 0. Hence (v ® l)z e Mn n {b G Sa:(v rg> l)b = 0} =

Fv®FBn (F). Then there exists a pv(x) e Bn (F) suchthat (v®l)z = v®pv(x)

(x = (x,, ... ,xn)). From (v ® l)z = v ® pv(x), (w ® l)z = w ® pw(x)

and ((v + w)® l)z = (v + w) ® pv+w(x), we get that pv(x) = pw(x) for ail

v , w G Fe'x + Fe2 + Fe3 and this common element in Bn (F) will be denoted

by p(x).

In the same way there is a q(x) e Bn (F) such that for all u in Ff^ + Ff^ +

Ff3 , we have (u® l)z = u®q(x).

Since *£/£" * (l/2)h" , J(e" ® 1 ,/f ® 1, z) = 0 and (/z" ® l)z = 0 we get
that h" ® (p(x) + q(x)) = 0, so p(x) = -q(x).

We therefore have that z - (h" ®p(x)) annihilates Sa , so that we can take

//' such that H'S" = 0. Proceeding in the same way with all ß e 0+ we

conclude that //' may be chosen with H'M = 0 and, since M is semisimple,

this implies that //' = 0 and each R(S") equals 0. Hence:

Theorem 3.4. Let M be a semisimple Malcev algebra over an algebraically closed

field F with N(M) = 0. Then M is a direct sum of ideals which are isomorphic

o ■

4. Semisimple Malcev algebras

Let us define NX(M) = N(M) and Nj+X(M) by means of

Nj+X(M)/N,(M) = N(M/N,(M)).

It is known ([10]) that if M is solvable then there is an r e N such that

M = Nr(M). The situation for semisimple Malcev algebras is quite different:

Proposition 4.1. // M is a semisimple Malcev algebra, then N2(M) = N(M)

(so for all r, Nr(M) = N(M)).

Proof. N(M)J(M,M,M) = 0 (l.\e)) so N(M) n J(M,M,M) = 0, since
M is semisimple. Now, J(N2(M),M,M) ç J(M,M,M) n N(M) = 0, so

N2(M) C N(M).

Proposition 4.2. If M is a semisimple Malcev algebra, then M/N(M) is also

semisimple.

Proof. Let B be an ideal of M such that B/N(M) is a minimal abelian ideal

of M/N(M). Then J(B,M,M) is not contained in N(M) because of 4.1, so

N(M) c J(B,M,M) + N(M) ç B. Hence B = J(B,M,M) ® N(M). But,
in this case, J(B,M,M) would be an abelian ideal of M, a contradiction.

Theorem 4.3. Let M be a semisimple Malcev algebra over an algebraically closed

field F.  Then M = N(M) © J(M ,M ,M), where the J-nucleus N(M) isa

semisimple Lie algebra and the ideal J(M ,M ,M)  is a direct sum of copies

ofC0.

Proof. By 4.1, 4.2 and 3.4 we have that J(M/N(M), M/N(M), M/N(M)) =
M/N(M), so  M = N(M) + J(M,M,M)  and, as shown above,   N(M) n

J(M,M,M) = 0.
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Notice that in case char F = 3, as shown by Filippov [11], any semisimple

Malcev algebra is a Lie algebra, so 4.3 is trivial in this case.

Now, reasoning as in [17, Chapter V, §6], one gets that if F is a perfect

field, Q an algebraic closure of F and M a semisimple Malcev algebra over

F, then Mn = M ®F ii is semisimple. For this, the only thing needed is the

following lemma:

2
Lemma 4.4. Let B be an ideal of a Malcev algebra M with B = B. Then

CM(B) = {xgM:xB = 0} is an ideal of M.

Proof. Let x,z e B, y g CM(B) and t e M; then (xz)(yt) = ((xy)z)t+

((yz)t)x + ((zt)x)y + ((tx)y)z - 0, so (yt)B2 = (yt)B = 0.

Hence, if M is a semisimple Malcev algebra over a perfect field F, then

Ma = N(MCl)®J(MQ,MQ,Mn). But N(Ma) ~ N(M)®F Q ([10, Proposition

3.4]), and obviously J(Ma,Ma,MQ) = J(M,M,M) ®F f2, so that M =
N(M) © J(M,M,M). Moreover, J(M,M,M)®F Q is completely reducible

as a module for (Ma)+ = (M+)n. Then the same happens for J(M,M,M)

so this is a direct sum of simple ideals. In consequence we get:

Theorem 4.5. Let M be a semisimple Malcev algebra over a perfect field F .

Then M = N(M)®J(M ,M ,M), where the J-nucleus N(M) is a semisimple

Lie algebra and the ideal J(M, M, M) is a direct sum of simple non-Lie Malcev

algebras (seven dimensional over their centroids).

In [7, Theorem 3.4] it is proved that if M is a weakly restricted semisimple

Malcev algebra of toral rank one, with a maximal subalgebra which is solvable,

then M is a Lie algebra. These hypotheses may be weakened:

Corollary 4.6. Let M be a semisimple Malcev algebra over a perfect field F and

let S be a maximal subalgebra of M. If S is solvable, then M is a Lie algebra.

Proof. If J(M,M,M) ¿ 0 then M = J(M,M,M) + S so N(M) =
M/J(M,M,M) would be solvable, hence equal to 0. Now if B is a proper

ideal of J(M,M,M), M = B + S and M/B would be solvable. Thus M
would be simple and the assertion follows from [8, Theorem 4.1].
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