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SHORT PROOFS OF TWO HYPERGEOMETRIC
SUMMATION FORMULAS OF KARLSSON

SHALOSH B. EKHAD

(Communicated by Andrew Odlyzko)

ABSTRACT. Karlsson [2] gave elegant proofs of two hypergeometric summation
formulas conjectured by Gosper, that were mentioned in [1]. Here I give new
proofs that are much shorter, but less elegant.

Theorem 1 ([1, formula (6.5)]).
Z nl(n—1/4)!
= (n—k)(n—k —1/4)1( 2n + k + 1/4)!k!9*
(=1/3)1(1/12)12%"
T (/4 (n = 1/3)(n+1/12)13%"
Proof. Let R(n) and F(n,k) be the sum and the summand respectively on

the left. Since the theorem is obviously true for n = 0, it would follow by
induction once we show that

(2) 27(12n + 13)(3n + 2)R(n + 1) — (256)R(n) = 0.
Let

(1)

52n% +91n + 18 + 16kn — 40k — 32k>
(8n+ 4k +5)(8n+ 4k +9)

G(n,k):=-16 F(n,k).

It is readily verified that

(3) 27(12n+13)(3n+2)F (n+1,k)—(256)F(n k) = G(n ,k)—G(n ,k-1),
and we get (2) by summing (3) with respect to k. O

Theorem 1’ ([1, formula (6.6)]).

Z nl(n—1/4)!

= (n—k)i(n—k — 1/4)!(2n + k + 5/4)1k!19*
B (1/3)1(5/12)12%"
5/ (n+1/3)(n +5/12)137"
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Proof. Let R(n) and F(n,k) be the sum and the summand respectively on
the left. Since the theorem is obviously true for n» = 0, it would follow by
induction once we show that

2" 27(12n+ 17)(3n + 4)R(n + 1) — (256)R(n) = 0.
Let

52n% + 143n + 36 + 16kn — 68k — 32k>

Bn+dk 1o @nrak 113 LUk

G(n,k):=-16

It is readily verified that
(3") 27(12n+17)(3n+4)F(n+1,k) — (256)F (n, k) = G(n k) - G(n k- 1),
and we get (2') by summing (3') with respectto k. DO
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