SHORT PROOFS OF TWO HYPERGEOMETRIC SUMMATION FORMULAS OF KARLSSON

SHALOSH B. EKHAD
(Communicated by Andrew Odlyzko)

Abstract

Karlsson [2] gave elegant proofs of two hypergeometric summation formulas conjectured by Gosper, that were mentioned in [1]. Here I give new proofs that are much shorter, but less elegant.

Theorem 1 ([1, formula (6.5)]).

$$
\sum_{k} \frac{n!(n-1 / 4)!}{(n-k)!(n-k-1 / 4)!(2 n+k+1 / 4)!k!9^{k}}
$$

$$
\begin{equation*}
=\frac{(-1 / 3)!(1 / 12)!2^{6 n}}{(1 / 4)!(n-1 / 3)!(n+1 / 12)!3^{5 n}} \tag{1}
\end{equation*}
$$

Proof. Let $R(n)$ and $F(n, k)$ be the sum and the summand respectively on the left. Since the theorem is obviously true for $n=0$, it would follow by induction once we show that

$$
\begin{equation*}
27(12 n+13)(3 n+2) R(n+1)-(256) R(n)=0 \tag{2}
\end{equation*}
$$

Let

$$
G(n, k):=-16 \frac{52 n^{2}+91 n+18+16 k n-40 k-32 k^{2}}{(8 n+4 k+5)(8 n+4 k+9)} F(n, k)
$$

It is readily verified that

$$
\begin{equation*}
27(12 n+13)(3 n+2) F(n+1, k)-(256) F(n, k)=G(n, k)-G(n, k-1) \tag{3}
\end{equation*}
$$

and we get (2) by summing (3) with respect to k.
Theorem 1^{\prime} ([1, formula (6.6)]).

$$
\begin{align*}
\sum_{k} & \frac{n!(n-1 / 4)!}{(n-k)!(n-k-1 / 4)!(2 n+k+5 / 4)!k!9^{k}} \\
& =\frac{(1 / 3)!(5 / 12)!2^{6 n}}{(5 / 4)!(n+1 / 3)!(n+5 / 12)!3^{5 n}}
\end{align*}
$$

Received by the editors November 10, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 33A30, 05A19.

Proof. Let $R(n)$ and $F(n, k)$ be the sum and the summand respectively on the left. Since the theorem is obviously true for $n=0$, it would follow by induction once we show that
(2^{\prime})

$$
27(12 n+17)(3 n+4) R(n+1)-(256) R(n)=0
$$

Let

$$
G(n, k):=-16 \frac{52 n^{2}+143 n+36+16 k n-68 k-32 k^{2}}{(8 n+4 k+9)(8 n+4 k+13)} F(n, k)
$$

It is readily verified that
$\left(3^{\prime}\right) 27(12 n+17)(3 n+4) F(n+1, k)-(256) F(n, k)=G(n, k)-G(n, k-1)$, and we get $\left(2^{\prime}\right)$ by summing (3^{\prime}) with respect to k.

References

1. I. M. Gessel and D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13 (1982), 295-308.
2. P. W. Karlsson, On two hypergeometric summation formulas conjectured by Gosper, Simon Stevin, J. Pure and Appl. Math. 60 (1986), 286-296.
c/o D. Zeilberger, Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104
