ON COMMON FIXED POINTS OF LINEAR CONTRACTIONS

ZOLTÁN SASVÁRI

(Communicated by Paul S. Muhly)

ABSTRACT. In this note we give a short and direct proof of a result about convex semigroups of linear contractions.

It is the aim of the present note to give a short proof of the following:

Theorem. Let B be a Banach space such that B and its dual B^* are strictly convex. If S is a weakly compact convex semigroup of linear contractions on B then there exists a unique projection $s_0 \in S$ such that $s_0s = ss_0 = s_0$ holds for all $s \in S$. Moreover, s_0B is the set of common fixed points of the operators in S.

Recall that a Banach space is called strictly convex if ||x|| = ||y|| and $x \ne y$ imply ||(x + y)/2|| < ||x||. The theorem above follows immediately from Corollary 4.14 and Theorem 7.2 in [1] but it appears that no direct proof of it has been published. A short proof in a special case was found by Radjavi and Rosenthal [3, Corollary 2]. The method of deLeeuw and Glicksberg is based on the theory of operator semigroups while in [3] Schauder's fixed point theorem is used. Our argument is based on the following simple fact: if K is a convex subset of B (B^*) and K is compact in the weak (weak*) topology then there exists a unique element of K with minimal norm.

For applications of the theorem we refer to [2, 4] (see also [1, §7] for connections with ergodic theory).

Proof of the theorem. Denote by B_0 the set of common fixed points of the operators in S. Plainly $0 \in B_0$ and B_0 is a closed S-invariant subspace of B. Setting $B_0^{\perp} := \{l \in B^* : l(x) = 0 \text{ for all } x \in B_0\}$ and $S^* := \{s^* : s \in S\}$ we observe that B_0^{\perp} is a closed S^* -invariant subspace of B^* and that S^* is a weak* compact convex semigroup of contractions on B^* . For every $l \in B_0^{\perp}$ the set S^*l is convex and weak* compact and hence there exists a unique $l_0 \in S^*l$ with minimal norm. In view of $s^*l_0 \in S^*l$ and $||s^*l_0|| \leq ||l_0||$ we must have

Received by the editors January 27, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47D05; Secondary 54H25, 47H10.

 $s^*l_0 = l_0 \ (s^* \in S^*)$, that is

$$(1) l_0(sx) = l_0(x), s \in S, x \in B.$$

We prove that $l_0=0$. Let $x\in B$ be arbitrary and consider the weakly compact convex set Sx. By the same argument as above we see that there exists $x_0\in Sx$ having minimal norm and hence satisfying $sx_0=x_0$ $(s\in S)$. That is $x_0\in B_0$ and therefore $l_0(x_0)=0$. Using (1) and the fact that $x_0=s'x$ with some $s'\in S$ we obtain $0=l_0(x_0)=l_0(s'x)=l_0(x)$. Thus $l_0=0$, i.e., $0\in S^*l$ for every $l\in B_0^\perp$.

Let now $l_1,\ldots,l_n\in B_0^\perp$ be arbitrary and choose $s_1^*\in S^*$ so that $s_1^*l_1=0$. Next we choose $s_2^*\in S^*$ such that $s_2^*(s_1^*l_2)=0$. Continuing this process we obtain an operator $s^*=s_n^*\cdots s_2^*s_1^*\in S^*$ with $s^*l_i=0$ $(i=1,\ldots,n)$. A simple compactness argument shows the existence of an operator $s_0^*\in S^*$ such that $s_0^*l=0$ for all $l\in B_0^\perp$, i.e. $l(s_0x)=0$ $(l\in B_0^\perp,x\in B)$. It follows that $s_0B=B_0$. Using the relation sx=x $(x\in B_0,s\in S)$ we obtain $ss_0=s_0$.

It remains to prove that $s_0s=s_0$. The argument is suggested by that of Corollary 4.13 in [1]. Note first that $s_0ss_0=s_0$ and $s_0ss_0s=s_0s$ hold because of $ss_0=s_0$. For every $l\in B^*$ we have

$$||s^*s_0^*l|| = ||s^*s_0^*s^*s_0^*l|| \le ||s_0^*s^*s_0^*l|| \le ||s^*s_0^*l||.$$

But $s_0^* s^* s_0^* = s_0^*$ and therefore (2) gives $||s^* s_0^* l|| = ||s_0^* l||$. If $s_0^* l \neq s^* s_0^* l$ for some $l \in B^*$ then we would have

$$||s_0^*l|| = ||s^*s_0^*l|| = \frac{1}{2}||s_0^*(s^*s_0^*l + s_0^*l)|| \le \frac{1}{2}||s^*s_0^*l + s_0^*l|| < ||s_0^*l||.$$

This contradiction shows that $s_0^* = s^* s_0^*$ and therefore $s_0 s = s_0$. The uniqueness of s_0 follows at once from $ss_0 = s_0 s = s_0$. The proof is complete.

The theorem has the following immediate corollary which generalizes Theorem 1 in [3].

Corollary. Let B and S be as in the theorem. Then the operators in S have a common fixed point other than O if and only if the operator O is not in S.

References

- K. deLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
- 2. ____, The decomposition of certain group representations, J. Analyse Math. 15 (1965), 135-
- 3. H. Radjavi and P. Rosenthal, On fixed points of linear contractions, Proc. Amer. Math. Soc. 93 (1985), 640-642.
- Z. Sasvári, Decomposition of positive definite functions defined on a neighborhood of the identity, Monatshefte Math. 104 (1987), 139–148.

Sektion mathematik, Technische Universität, DDR-8027 Dresden, German Democratic Republic