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ON COMMON FIXED POINTS OF LINEAR CONTRACTIONS

ZOLTÁN SASVÁRI

(Communicated by Paul S. Muhly)

Abstract. In this note we give a short and direct proof of a result about convex

semigroups of linear contractions.

It is the aim of the present note to give a short proof of the following:

Theorem. Let B be a Banach space such that B and its dual B* are strictly

convex. If S is a weakly compact convex semigroup of linear contractions on B

then there exists a unique projection s0 e S such that s0s = ss0 = sQ holds for

all s e S. Moreover, s0B is the set of common fixed points of the operators in

S.

Recall that a Banach space is called strictly convex if \\x\\ = ||v|| and x #

y imply \\(x + v)/2|| < ||a:|| . The theorem above follows immediately from

Corollary 4.14 and Theorem 7.2 in [1] but it appears that no direct proof of it

has been published. A short proof in a special case was found by Radjavi and

Rosenthal [3, Corollary 2]. The method of deLeeuw and Glicksberg is based on

the theory of operator semigroups while in [3] Schauder's fixed point theorem

is used. Our argument is based on the following simple fact: if K is a convex

subset of B (B*) and K is compact in the weak (weak*) topology then there

exists a unique element of K with minimal norm.

For applications of the theorem we refer to [2, 4] (see also [1, §7] for con-

nections with ergodic theory).

Proof of the theorem. Denote by BQ the set of common fixed points of the

operators in S. Plainly 0 e BQ and B0 is a closed ¿'-invariant subspace of

B. Setting B¿- := {/ e B* : l(x) = 0 for all x e B0} and S* := {s* : s e S}

we observe that B^ is a closed S*-invariant subspace of B* and that S* is a

weak* compact convex semigroup of contractions on B*. For every I e BQ the

set S*l is convex and weak* compact and hence there exists a unique l0e S*l

with minimal norm. In view of s*l0 e S*l and ||s*/0|| < ||/0|| we must have
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s*l0 = l0  (s* e S*), that is

(1) l0(sx) = l0(x),       seS,    xeB.

We prove that /0 = 0. Let x e B be arbitrary and consider the weakly

compact convex set Sx. By the same argument as above we see that there

exists x0 e Sx having minimal norm and hence satisfying sx0 = x0 (s e S).

That is x0 e BQ and therefore lQ(xQ) = 0. Using (1) and the fact that xQ = s'x

with some s' e S we obtain 0 = l0(x0) = l0(s'x) = l0(x). Thus /0 = 0, i.e.,

0 e S*l for every I e B¿ .

Let now /,, ... ,ln e B^ be arbitrary and choose 5* e S* so that s*xlx = 0.

Next we choose 5* e S* such that s2(sxl2) = 0. Continuing this process we

obtain an operator s* = s*---s2s* e S* with 5*/( = 0 (z = 1,...,«). A

simple compactness argument shows the existence of an operator s^ e S* such

that s*l = 0 for all / e B¿ , i.e. l(s0x) = 0 (l e B^ ,x e B). It follows that

s0B = B0 . Using the relation sx = x  (x e B0,s eS) we obtain ss0 = s0 .

It remains to prove that sQs = s0. The argument is suggested by that of

Corollary 4.13 in [1]. Note first that s0ssQ = s0 and sQssQs = s0s hold because

of ss0 = sQ . For every I e B* we have

(2) ||i*J*/|| = ||5*S0*5*5*/|| < ||50Vs0*/|| < ||S*Í*/|| .

But 5*5*5* = 5* and therefore (2) gives ||5*5*/|| = ||5*/||. If 5*/ ^ s*s^l for

some I e B* then we would have

||50*/|| = ||5*50*/|| = i||5*(5*50*/ + 50*/)|| < I||5*5*/+ 5*/|| < ||5*/|| .

This contradiction shows that 5* = s*s^ and therefore sQs = 50 . The unique-

ness of 50 follows at once from ss0 = s0s = 50 . The proof is complete.

The theorem has the following immediate corollary which generalizes Theo-

rem 1 in [3].

Corollary. Let B and S be as in the theorem. Then the operators in S have a

common fixed point other than 0 if and only if the operator 0 is not in S.
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