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(Communicated by James E. West)

Abstract. L. B. Treybig proved that a continuous Hausdorff image of a com-

pact ordered space does not contain a nonmetric product of compact, infinite

spaces. Analogous results hold for the images of rim-countable continua and

locally connected, rim-scattered continua.

It is known, (see Treybig [3] and Bula [1]), that a compact ordered space

cannot be mapped onto a nonmetric product of compact infinite spaces. In this

paper, we will prove that analogous results hold for the classes of rim-countable

continua and locally connected rim-scattered continua.

Throughout the paper all the spaces are assumed to be Hausdorff and all the

mappings are assumed to be continuous. A continuum is a compact connected

space. A rim-countable continuum is a continuum which admits a basis of open

sets with countable boundaries. A scattered set in a topological space is a set

which does not contain any nonempty, dense in itself subset; i.e., each nonempty

closed subset has an isolated point. A rim-scattered continuum is a continuum

which admits a basis of open sets whose boundaries are scattered.

We shall prove the following theorems:

Theorem 1. Let X be a rim-countable continuum and f: X —> Z a mapping

of X onto a space Z. Then Z does not contain a product of a nonmetric,

nondegenerate compact space and a perfect set.

Theorem 2. Let X be a rim-scattered, locally connected continuum and

f: X —> Z a mapping of X onto a space Z. Then Z does not contain a

product of a nonmetric, nondegenerate compact space and a perfect set.

Let X be a topological space. The weight v/(X) of X is the least cardinal

number a having the property that X admits a basis for its topology with

cardinality < a . The family N of subsets of X is said to be a network for X,

if for each x G X and each open set O c X containing x , there exists V g N
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such that x G V c O. The network weight nw(X) of X is the least cardinal

number a such that there exists a network with cardinality < a . Note that for

compact spaces v/(X) = nv/(X) (Engelking [2, Theorem 3.1.19, p. 171]). We

will denote the set of rational numbers by Q.

1.  RlM-COUNTABLE CASE

Lemma 3. Let X be a rim-countable continuum and let U be an open Fa-set

in X. Then U has countably many componenets.

Proof. Let U be an open -FCT-set in X. Then using the normality and the

rim-countability of X, we can find a sequence of open sets Vn, »=1,2,...,

such that

F1carr1)c--cK„cCi(rB)c--cc/

and Bd(F ) is countable, and

oo

(I) U=\JC\(Vn).

Let C be a componenet of C1(F) for some n. Since Cl(Vn) is a closed

subset of the continuum X, C <1 Bd( Vn) ^ 0, by the Boundary Bumping

theorem. Thus, as Bd(F ) is countable, C1(F ) has at most countably many

components. From (I), it follows that U also has at most countably many

components, because each component of C1(FJ lies in some component of

U, and components are disjoint sets.

First we will prove the following theorem which is a special case of Theorem

1.

Theorem 4. Let X be a rim-countable continuum and f:X—*Z a mapping

of X onto a space Z.   Then Z  does not contain a product of a nonmetric,

nondegenerate compact space and [0,1].

Proof. Let  Y x [0,1 ] be a subspace of Z  such that  7 is a nondegenerate

compact space. We will show that Y is metrizable.  Since Y is compact, as

we noted v/(X) — im(X). Therefore it suffices to show that Y has a countable

network.

Let n,: y x [0,1] —» [0,1] be the natural projection. Since Y x [0,1] is a.

closed subset of the compact space Z , by the Tietze Extension Theorem, n;

can be extended to an onto mapping II: Z —» [0,1].

Let r,se ßn[0,1], r < s. Then Yl~l((r,s)) is an open set in Z containing

Yx(r,s). Moreover ET ({r,s)) is an open Fa-set. Indeed, we can find rn,sn G

ßn [0,1], « = 1,2,...,  such that

r<      < rn+i <rn<-<ri<s,<-<sn< sn+l <■    <s

and
oo

n_1((r,5)) = (Jn-1((r.,i;)).
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It follows that /"'(n~ ((r,s))) is also an open i^-set in X and by Lemma 3,

it has countably many components.

Let Srs be the set of all components of /"'(n-1 ((r, s))). Let S be the union

of all Srs, r, s G Q n [0,1 ]. Then S is a countable set, because it is the union

of countably many countable sets. Let N = {YlY(f(C) n (7 x [0,1])): C e S}

where YlY : Y x [0,1] —> Y is the natural projection onto Y. It is clear that N

is a countable set. We shall show that N is a network for Y.

Let y G Y and let M be a closed subset of Y such that y eY - M. Then

{y} x [0,1] and M x [0,1] are disjoint closed subsets in Y x [0,1], and hence

in Z . Therefore, f~ ({y} x [0,1]) and f~l(M x [0,1]) are disjoint closed

sets in X. Since X is rim-countable, there exists a closed countable set B such

that B separates f'\{y) x [0,1]) from f'\M x [0,1]) in X. Since 5 is

countable, there exists / G [0,1 ] such that

(ii) /"'(n-'w)nfi = 0.

Notice that Y x {t} c n~' (t). It follows that there exist r,s e Q n [0,1 ] such

that r < t < s and f~x{YTl{(r,s))) n B = 0. Let C be a component of

/"'(FT'((/.s))) such that for the point (y,t)

(III) Cnf'tfy.i))^.

By the definition of S, C G S and, therefore, ny(/(C) n {Y x [0,1])) G

TV. By (II), C<1B = 0. So C n f~l{M x [0, 1]) = 0. This implies that

(/(C)n(7x[O,l]))rWx[O,l] = 0. Hence, nr(/(C)n(7x[0, l]))nM = 0
and by (III), we have y G ny(/(C) n (7 x [0,1])). This proves that N is a

network for 7.

Lemma 5. Each compact perfect set maps onto [0,1].

Proof of Theorem 1. Assume that Z contains a product of a compact space

7 and a perfect set F. By Lemma 5, there exists a mapping g: F -* [0,1]

of F onto [0,1]. In the proof of Theorem 4, replace the mapping n; with

the mapping g °TlF (the composition of the mappings g and HF), where

nf : F x F -t f is the natural projection onto F , and follow the argument in

the proof of Theorem 4.

Corollary 6. A continuous image of a rim-countable continuum does not contain

a nonmetric product of nondegenerate continua.

2.   RlM-SCATTERED CASE

As in the previous case, we will first prove Theorem 2 for the case that the

perfect set is [0,1]. To complete the proof, we will need the following lemmas,

one of which is stated without proof.

Lemma 7. Let X be a scattered compact space and let Y be a perfect space.

Then there does not exist an onto mapping from X to Y .
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Proof. Suppose that there exists a mapping /: X —> Y of X onto 7 . Because

of the compactness of X, we may assume that / is irreducible; i.e., no proper

closed subset of X maps onto 7 under /.

Let x be an isolated point of X. Then {x} is an open set in X and,

therefore, X - {x} is closed. Since 7 is perfect, {/(x)} is not an isolated

point of 7. Now, f(X-{x}) is a compact set, hence, closed subset of 7. Since

7 - {/(*)} c f(X - {x}) and f(x) G Cl(7 - /(*)), we have Y = f(X - {x})
which contradicts the irreducibility of /.

Lemma 8. Let X be a locally connected continuum and let U be an open Fa-set

in X. Then U has countably many components.

Theorem 9. If X is a rim-scattered, locally connected continuum and f:X—>Z

is a mapping of X onto Z , then Z does not contain the product of a nonmetric,

nondegenerate compact space and [0,1].

Proof. Suppose 7 x [0,1 ] is a subspace of Z where 7 is a nondegenerate

compact space. We will prove that 7 is metrizable by showing that 7 has a

countable network as in the proof of Theorem 4.

Let n; : 7 x [0,1 ] —► [0,1 ] be the natural projection. By the Tietze Extension

Theorem, n, can be extended to a mapping n : Z —> [0,1 ].

Let r,seQn[0,l], r < s. Using Lemma 8, we construct the set Srs as in

the proof of Theorem 4. Let S be the union of all Srs, r ,s G Q n [0,1] with

r<s and N = {ny(/(C)n 7 x [0,1])): C G S) where UY: y x[0,l]-> 7 is

the natural projection. As in Theorem 4, TV is a countable set.

The argument to show that TV is a network for 7 is the same as in the proof

of Theorem 4 except that in this case the set B in the proof of Theorem 4

would be a scattered set. Applying Lemma 7 and following the same argument

as in the proof of Theorem 4, we see that TV is a network for 7 .

Proof of Theorem 2. Theorem 9 and the arguments of the proof of Theorem 1

imply the result.
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