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A GENERAL CHAIN RULE FOR

DISTRIBUTIONAL DERIVATIVES

L. AMBROSIO AND G. DAL MASO

(Communicated by Barbara L. Keyfitz)

Abstract. We prove a general chain rule for the distribution derivatives of

the composite function v(x) = f(u(x)), where u: R" —> Rm has bounded

variation and /: Rm —> R*  is Lipschitz continuous.

Introduction

The aim of the present paper is to prove a chain rule for the distributional

derivative of the composite function v(x) = f(u(x)), where u: Q —> Rm has

bounded variation in the open set ilcR" and /: Rw —> R is uniformly Lip-

schitz continuous. Under these hypotheses it is easy to prove that the function

v has locally bounded variation in Q, hence its distributional derivative Dv

is a Radon measure in Q with values in the vector space Jz? m of all linear

maps from R" to Rm . The problem is to give an explicit formula for Dv in

terms of the gradient Vf of / and of the distributional derivative Du .

To illustrate our formula, we begin with the simpler case, studied by A. I.

Vol pert, where / is continuously differentiable. Let us denote by Su the set

of all jump points of u, defined as the set of all xef! where the approximate

limit u(x) does not exist at x. Then the following identities hold in the sense

of measures (see [19] and [20]):

(0.1) Dv = Vf(ü)-Du   onß\SH,

and

(0.2) Dv = (f(u+)-f(u-))®vu-rn_x    onSu,

where vu denotes the measure theoretical unit normal to Su, u+ , u~ are

the approximate limits of u from both sides of Su, and %?n_x denotes the

(n - l)-dimensional Hausdorff measure.

In this paper we prove that (0.2) remains valid when / is only Lipschitz

continuous. The main difficulty in this case lies in the extension of the chain
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rule (0.1). In fact it may happen that the function f is nowhere differentiable on

the range of u. To overcome this difficulty, for every x G Q\S we introduce

the tangent space

T" = < y G Rw : y = ü(x) + / tk-tW > z )    f°r some z g R"

where Du/\Du\ denotes the Radon-Nikodym derivative of the J? m-valued

measure Du with respect to its variation \Du\. We prove that for |D«¡-almost

every x G Q\SU the restriction of / to T" is differentiable at u(x) and that

the identity

Dv = V(/lr„)(û) • Du   on Q\Su

holds in the sense of measures.

When « is a scalar function (i.e., m = 1), from the previous result we

deduce easily that / is differentiable at u(x) for |7)«|-almost every x G ß\Su

and that the usual chain rule (0.1) holds. For a different proof of this result we

refer to [7].

When u is scalar and belongs to a Sobolev space W ' (ß), the chain rule

(0.1) is well known when / is continuously differentiable except for a finite

number of points (see [18]). In the general case of a Lipschitz continuous

function /, the chain rule was established (without proof) by G. Stampacchia

in [17]. It can also be obtained from an unpublished result by J. Serrin (see

[14]). Two different proofs of this formula can be found in the literature (see

[14] and [4]).

When u is vector-valued and belongs to the Sobolev space W ' (ß;Rm),

our result implies that for almost every xeil the restriction of / to the affine

space

T" = {y e Rm : y = u(x) + (Vu(x), z)   for some z g R"}

is differentiable at u(x) and that

Vv = V(f\pu)(u) ■ Vu   a.e. inß.

Compare this result with the chain rule for tracks studied in [14].

1. Notation and basic results

about functions of bounded variation

Let ficR" be an open set; by B(Q) we denote the rj-algebra of Borel sets

B c Q, by |77| the Borel-Lebesgue «-dimensional measure, and by f%*n_x(B)

the Hausdorff (n - 1 )-dimensional measure of any Borel set B c R" . The

vector space of linear mappings L : R" —» Rm will be denoted by S?n m , and it

will be endowed with the Hilbert-Schmidt norm

}■

|£| =
\
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where wl, ... ,wn is any orthonormal basis of R" (the definition is indepen-

dent of the choice of the basis). If L G Jz? m , z g R" , we often denote L(z)

by (L, z). For every pair of vectors a G Rm , ieR", the tensor product

a <g> b G ■2C„ m is canonically defined by
n ,m

(a®b,p) = (b,p)a       Vp gR
n

where (•, •) denotes scalar product in R" .

Let (V, | • |) be a finite dimensional vector space. If a: B(ß) —► V is any

measure, by \o\ we denote its total variation, defined for every B g B(Q) by

{oo oo "I

£ \a(B¡)| :B = [JBi, 5, G B(Q), B¡ mutually disjoint \.
1=1 1=1 J

All measures we shall deal with in this paper are measures of finite total vari-

ation. If p : B(Q) —► [0, + oo[ is a finite measure and h: £1 —» V is a Borel

function such that /a \h\ dp < +00, we denote by h ■ p the vector measure

defined by

h-p(B)= [ hdp       VfieB(fl).
Jb

If o : B(Q) —> V is a measure such that |cr|(Q) < +00, by the Radon-Nikodym

theorem the absolutely continuous part of a with respect to p is representable

as h ■ p for some Borel function h : il —» V whose values are determined p-

almost everywhere. We denote such a function h by a/p .\fp: B(Q) —► -S? m

is a measure and z G R" , we denote by (p, z) the scalar measure defined by

(p,z)(B) = (p(B),z).

We denote by J9F(fi;Rm) the space of functions u G L (Q;Rm) whose

distributional derivative is representable as a measure of finite variation. For

the main properties of functions of bounded variation we refer to [11], [12],

[15], [19], [20]. For every function ueBV(Q;Rm) we denote by Du : B(Q) —

Sf      the distributional derivative of u, characterized by the property
n ,m

/aÉ.'"*M»-/uÈ((S.î,),^N
for every g e C0'(Q;Rnm), g = (g,, ... , gm), where é^ ,... ,em is the canon-

ical basis of Rw . For every open set A c Í2, the above formula implies

(1.1)        |7>M|(.4) = sup| /'¿M(')divg(iix:^GC(J(/l;R',m),|^|<l| ,
[Ja ¿=i J

where g = (g,, ... ,gm). By Riesz's theorem, a function « G L (Q;Rm) be-

longs to BV(Q;Rm) if and only if the quantity \Du\(Q) defined by (1.1) is

finite, and one can see immediately that u —► |7)w|(^) is lower semicontinuous

with respect to the Llloc(A;Rm) convergence for every open set A c Q.  By
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using mollifiers, it can be easily proved that

(1.2) \Du\(A)= [ \Vu\dx
Ja

whenever u is locally Lipschitz continuous in A. By an approximation the-

orem first proved in the case m — 1 by Anzellotti and Giaquinta in [3] and

later extended to vector functions by Ambrosio, Mortola, and Tortorelli (see

[2, Proposition 4.2]), for every function u G BV(A ;Rm) it is possible to find a

sequence (uh) c C (Â ;Rm) suchthat

(1.3) lim   [\u,-u\dx = 0, lim  \Du. \(A) = \Du\(A).
h->+ooJA      " A-n-oo

For every function u G BV(Q ; Rm) we denote by Su the set of points where

u has not an approximate limit in the sense of [11, 2.9.12], i.e. x G Q\SU if

and only if

\{yeB(x):\u(y)-ü(x)\>e}\
(1.4) 3ü(x) G Rm: Ve > 0   lim-p -—-- = 0,

p^o+ p"

where B (x) is the open ball centered at x with radius p . It can be proved (see

[19, Theorem 15.2], [11, 3.2.29]) that Su can be covered, up to ^_j-negligible

sets, by a sequence of hypersurfaces of class 1, and ü : Q\S -* Rm is a Borel

function equal to u almost everywhere [11, 2.9.13]. We split the distributional

derivative Du into two parts Du , Ju, setting

(1.5) Du(B) = Du(B\Su),        Ju(B) = Du(BnSJ

for every Borel set B c il. By [19, Theorem 9.2] and [11, 3.2.26], in ;F_,

almost every x g S it is possible to find u+ , u~ G Rm and a versor vu e Rn

such that

\{yeB(x):(y-x,uu)>Q,\u(y)-u+\>e}\
(1.6) lim-ñ-= 0,

p^o+ p

and

,.      \{y€B(x):(y-x,vu)<0,\u(y)-u~\>e}\
(1.7) lim -^-f.-= 0

P-0+ p"

for every e > 0. The triplet (w+ ,u~ ,vu) is uniquely determined up to an

interchange of u+, u~ and to a change of sign of uu. Moreover, (see [19,

Theorem 15.1])

(1.8) Ju(B)= [     (u   -u~)®vud^n_x       V5gB(Q).
JßnSu

We recall also that Fleming-Rishel coarea formula implies (see, for instance,

[1])

(1.9) \Du\(B) = 0   VTJGB(fi) wither    (5) <+oo.
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In the proof of our theorem the following two results play a fundamental role.

The first one, proved in [1], allows us to describe the distributional derivative

of a function of bounded variation by means of the derivatives of the one-

dimensional sections. The second one (see, for instance, [13, Appendix A]) is

concerned with differentiation of measures on the real line.

To state the theorem below, we first need to introduce some new notation.

Let Q[ c Rp , Q2 c R" be open sets, and let p be a positive finite measure in

Í2[. Let ax be a mapping which assigns to each xefi, an Revalued Radon

measure in £l2 in such a way that x —» ox(A) is a Borel mapping for every

open set A c íí2 and Jn \ox\(Çl2)dp(x) < +oo. Under these assumptions,

we can define an Revalued measure in the product space Ql xf¡2, which we

denote by Jn ax dp(x), characterized by the property

(1.10) [  axdp(x)(AxB)= [ ax(B)dp(x)       VA e B(Q,), VTi g B(Q2).
Jn, Ja

Moreover, by (1.10) one gets by approximation

/        hd( [  axdp(x)) = [   f  h(x,y)dax(y)dp(x)
Jn,xn2       \Jn, J     Jn,Jn2

for every bounded Borel function h : Í2, x £l2 —► R. We remark that

(1.11) /   axdp(x)= I   axdp(x) o o• — a'x       /¿-almost everywhere
Jn, Jn,

and, using Aumann's selection theorem (see [5, Theorem III.30]), it is also

possible to prove that

/   axdp(x) = /   \ax\dp(x).
Jn, Jn,

(1.12)
./a, Jn,

Theorem 1.1. Let u G BV(R" ; Rm), v G R", |i/| = 1. Let n   c R\ be defined

by
n„ = {yeR":(y,v) = 0},

and, for every y &nv, let u  : R —► R'" be defined by

uy(t) = u(y + tu)       V/gR.

Then for ß^nX-almost every y &nv the function u   has bounded variation and

(Du,v)= [ Duyd^n_x(y),
J Tit,

(Ju,u)= [ Juyd^n_,(y).
J n„

In addition,

(1.14) SUr = {teR:y + weSJ

and

(1.15) 0,00 = ¿¿+¿0      WeR\5U)

for %?nX-almost every y G nv .

(1.13)
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Theorem 1.2. Let p, v be Radon measures in R, and assume that p > 0.

Then the set

Sp = {t G R : p([t, s[) = 0 for some s > t}

belongs to B(R) and p(S ) - 0. Moreover, the Borel functions

A (0 = liminf#4|,       A+(0 = Hmsup4fm

are equal p-almost everywhere on R\S   and they are both versions of v/p.

2. Statement and proof of the main result

We can now prove the main theorem of this paper.

Theorem 2.1. Let Q c R" be an open set, let u G BV(Q ; Rm), and let

(2.1 ) T" = l y G Rm : y = ü(x) + / -=— (x) , z \ for some z gR"\

for every x G &\S • Let /: Rm —► R be a Lipschitz continuous function such

that /(0) = 0,and let v = f(u) : Q -* Rk . Then v e BV(Q;Rk) and

(2.2) Jv = (f(u+) - f(u~)) ® vu ■ JPn_ASu.

In addition, for \Du\-almost every xgQ the restriction of the function f to T"

is differentiable at u(x) and

(2.3) £>v = V(f\TU)(ü)^--\Du\.
\Du\

Before proving the theorem, we state without proof three elementary remarks

which will be useful in the sequel.

Remark 2.1. Let w :]0, +oo[—>]0, +oo[ be a continuous function such that

co(t) ^0 as i-»0. Then

lim g(oj(h)) = L o lim g (h) = L

for any function g :]0, +oo[-» R.

Remark 2.2. Let g : R" —*• R be a Lipschitz continuous function and assume

that

L(z) = hm *(**)-*(0)

exists for every z G Q" and that L is a linear function of z. Then g is

differentiable at 0.

Remark 2.3. Let A : R." —> Rm be a linear function, and let / : Rm —* R be a

function. Then the restriction of / to the range of A is differentiable at 0 if

and only if f(A) : R" ^ R is differentiable at 0 and

V(/llmM))(°)^ = V(/^))(0)-
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Proof of Theorem 2.1. We begin by showing that v e BV(il;R ) and

(2.4) \Dv\(B) < K\Du\(B)       MB G B(Q),

where K > 0 is the Lipschitz constant of /.   By (1.2) and by the approxi-

*)mation result quoted in §1, it is possible to find a sequence (u.) c C (Q;Rm)

converging to u in L (£l;Rm) and such that

lim   f \Vu,\dx = \Du\(Q).
A—+oo7n

The functions vh = f(uh) are locally Lipschitz continuous in Q, and the def-

inition of differential implies that \Vvh\ < K\Vuh\ almost everywhere in Q.

The lower semicontinuity of the total variation and (1.2) yield

\Dv\(Q) < Hminf|7)tU(Q) = liminf f \Vvh\dx
/i->+oo " A-»+oo 7ii

< Kliminf / |Vu, \ dx - K\Du\(Q).

Since /(0) = 0, we have also

/ \v\dx <K I \u\dx;
Jn Jn

therefore u G BV(íl;R ). Repeating the same argument for every open set

A c Q, we get (2.4) for every B e B(Q), because \Dv\, \Du\ are Radon

measures. To prove (2.2), first we observe that

(2.5) SVCSU,       v(x) = f(ü(x))       WxgQ\Su.

In fact, for every e > 0 we have

{y G Bp(x) : \v(y) - f(ü(x))\ > s} c {y G Bp(x) : \u(y) - ü(x)\ > e/K},

hcncc
\{yeB (x):\v(y)-f(ü(x))\>e}\

hm-ñ-= 0
/)-0+ p"

whenever x G &\S .  By a similar argument, if x G Su is a point such that

there exists a triplet (u+ ,u~ ,uu) satisfying (1.6), (1.7), then

(v+(x) - v~(x)) ® vv = (f(u+(x)) - f(u~(x))) ®uu    if x G Sv

and f(u~(x)) = f(u+(x)) if x G Su\Sv . Hence, by (1.8) we get

Jv(B) = f     (v+-v~)® vv d^n_x -.  [     (f(u+) - f(u~)) ® vu
J BC\Sr Jbhs,,

Í + -

iBns,

and (2.2) is proved.

n-1

n-1

To prove (2.3), it is not restrictive to assume that k = 1 .   Moreover, to

simplify our notation, from now on we shall assume that fi = R" . The proof
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of (2.3) is divided into two steps. In the first step we prove the statement in

the one-dimensional case (n = 1), using Theorem 1.2. In the second step we

achieve the general result using Theorem 1.1.

Step 1. Assume that n = 1 . Since Su is at most countable, (1.9) yields

that 17)^1(5;YSJ = 0, so that (2.4) and (2.5) imply that Dv = Dv + Jv is the
Radon-Nikodym decomposition of Dv in absolutely continuous and singular

part with respect to |t3w| . By Theorem 1.2, we have

(2.6)   a^o=um Dvi[t>s»
\Du\ ^+|7)M|([i,5[)

Du
(t) = lim

Du([t,s[)

\Du\ ^'+\Du\([t,s[)

|7>w|-almost everywhere in R. It is well known (see, for instance, [11, 2.5.16])

that every one-dimensional function of bounded variation w has a unique

left continuous representative, i.e., a function w such that w = w almost

everywhere and lim^^ w(s) = w(t) for every t G R. These conditions imply

(2.7) û(t) = Du(]-oc,t[),        v(t)=Dv(]-oo,t[)       WgR

and

(2.8) v(t) = f(û(t))       V/GR.

Let t G R be such that |73«|([i,s[) > 0 for every 5 > / and assume that the

limits in (2.6) exist. By (2.7) and (2.8) we get

v(s)-v(t)     f(û(s))-f(û(t))

\Du\([t,s[) \Du\([t,s[)

Du
f(û(s))-f(û(t) + -^-(t)\Du\([t,s[))
_\JM_

\Du\([t,s[)

f(û(t) + ^-(t)\Du\([t,s[))-f(û(t))

+ \Du\

\Du\([t,s[)

for every s > t. Using the Lipschitz condition on / we find

i>(s) - v(t)
f(û(t) + ^-(t)\Du\([t,s[))-f(û(t))

\Du\

\Du\([t,s[) \Du\([t,s[)

<K
u(s) - û(t)      Du

\Du\([t,s[)~J5u]

\Du\([t ,s[) is continuous and converges to 0 as s J. t.By (1.9), the function 5

Therefore Remark 2.1 and the previous inequality imply

Dv , x      ,■
-^— (t) = lim
\Du\ ft^v

f(Û(t) + h^-(t))
\Du\

f(û(t))
\Du\-a.e. in R.
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By (2.7),   u(x) = ü(x)  for every x G R\SU ; moreover, applying the same

argument to the functions u'(t) = u(-t), v'(t) = f(u(t)) - v(-t), we get

fm + hJ*L(t))-mt))
V-(t) = lim-^-       |73w|-a.e. in R

\Du\ h^o h

and our statement is proved.

Step 2. Let us consider now the general case n > 1. Let u gR" be such that

|^| = 1, and let nv = {y G R" : (y, u) = 0}. In the following, we shall identify

R" with nvxR, and we shall denote by y the variable ranging in nv and by

t the variable ranging in R. By the just proven one-dimensional result, and by

Theorem 1.1, we get

f(ü(y + tu) + h-^X(t))-f(ü(y + tu))
\Du\ Dvv

lim-Ç-= ^^(t)       \Du |-a.e. in R
a^o h \Du \ y

for ^_j-almost every y &nv . We claim that

(Du u) Duv
(2.9) K"  '   ; (y + tu) = -^(t)       \Duv|-a.e. in R

\(Du,u)\ ' \Du
v

y

for ^_j-almost every y g itv . In fact, by (1.12) and (1.13) we get

/ wi-^d<-^)= í huyd^-Áy)
Jn, \DUy\ y Jn„

= (Du,v) = -£^-\(Du,v)\= f ^2J±(y + .v).\buy\dß?n_x(y)
\(Du,v)\ Jn, \(Du,v)\ y

and (2.9) follows from (1.11). By the same argument it is possible to prove that

(Dv  u) Dvv
(2.10) ^   '   ; (y + tu) = ^^(t)       \Duy\-a.e. in R

\(Du,u)\ \Duy

for ^[-almost every y g nv . By (2.9) and (2.10) we get

f(ü(y + tu) + h-^^-(y + tu))-f(ü(y + tu))
i- \(Du,v)\ (Dv ,v) .       t  ,
lim-^-'—'-I-=   ^c       ' (y + tu)
h-*o h \(Du,u)\

\Du \-a.e. in R for ^[-almost every y G nv , and using again (1.12), (1.13)

we get

f(ü(x) + h{^U'u) (x))-f(ü(x))        ñ

lim_l^l_=  MM
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\(Du,u)\-a.e.   in R" .   Since the function  \(Du,u)\/\Du\  is strictly positive

|(73m , ¡/)|-almost everywhere, we obtain also

mx) + h\ih^(x)^±(x)) - f(ü(x))
JK \Du\        '\(Du,u)\K

(2.11) a™ h

\Du\ \(Du,u)\

|(73w,i/)|-almost everywhere in R" . Finally, since

\(DU,U)\   (DU,U)    _ (DU,U) _ I bu

\Du\     \(Du,u)\ \Du\ \\Du\
,u )        \Du\-a.e. in R

\(Du,u)\   (Dv,u)       (Dv,u) Dv      \ ~ „
-±—-—— -^- = -i—^—- = ( —— , u )        Dm -a.e. in R

\Du\     \(Du,u)\ \Du\        \\Du\     I

and since both sides of (2.11) are zero |7)«|-almost everywhere on |(73w,^)|-

negligible sets, we conclude that

f(ü(x) + h(^-(x),u))-f(ü(x))
,■        V \Du ) / Dv \
lim —^-;-—-= ( ^=— (x), u )
A-o h \\Du\ I

|73w|-a.e. in R" . Since u is arbitrary, by Remarks 2.2 and 2.3 the restriction of

/ to the affine space T" is differentiable at u(x) for |73w|-almost every x G R"

and (2.3) holds.   Q.E.D.

3. Some corollaries

Formula (2.3) becomes simpler in some particular but important cases, i.e.,

when w is a scalar function (m = 1) or when u G W 'p(il;Rm) for some p,

1 < p < +00 .

Corollary 3.1. Let u G BV(Çl) and let f: R —> R be a Lipschitz continuous

function such that /(0) = 0. Then v = f(u) belongs to BV(Cl) and

Jv = (f(u+)-f(u-))uu-%"n_x\Su.

In addition, for \bu\-almost every x G Q the function f is differentiable at

ü(x) and

Dv = Vf(ü)-Du.

Proof. Since Du/\Du\ - ±1 |73«|-almost everywhere in Q, the corollary is a

straightforward consequence of Theorem 2.1.    Q.E.D.

The last formula of the previous corollary can also be stated in the following

form:

bv = g(u) ■ bu
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where g: R —» R is any Borel function such that g(t) — Vf(t) almost ev-

erywhere. In fact, by the Fleming-Rishel coarea formula, it is not difficult to

desume that (see, for instance, [1])

\Du\(ü~[(E)) = Q       V£gB(R) with |£| = 0.

In this form, when u belongs to a Sobolev space VV 'p(Cl), Corollary 3.1 has

been proved by Marcus and Mizel in [14].

Corollary 3.2. Let p G [1, + oo], « G W] •p(il;Rm), and let f: Rm -* Rk be

a Lipschitz continuous function such that f(0) = 0. Then v — f(u) belongs to

W 'p(Çl;R ), for almost every x G il the restriction of the function f to the

affine space

T" = {y g Rm : y = u(x) + (Vu(x), z)   for some z e Rn}

is differentiable at u(x), and

Vv = V(f\TU)(u)Vu   a.e. in Q.

Proof. For functions u G WXo¿ (íl;Rm) the set Su is ^_ ^negligible (see [11,

4.5.9(29)] and [19, Theorem 15.3]). By (2.2) and (2.4), Jv = 0 and Dv
is absolutely continuous with respect to the Lebesgue measure. Since ü = u

almost everywhere, and since (2.4) implies

\Vu(x)\ = 0=>\Vv(x)\=0   a.e. in Q,

the statement of the corollary follows from (2.3).   Q.E.D.
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