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ON UNITARY INVARIANT IDEALS

IN THE ALGEBRA OF COMPACT OPERATORS

JÓZSEF V. VARGA

(Communicated by John B. Conway)

Abstract. Lie ideals are constructed, which are ideals in the algebra of compact

operators but not ideals in the algebra of bounded operators, thus settling a

question of C. K. Fong and H. Radjavi in the negative.

Introduction

Let %* be an infinite dimensional complex Hilbert space. By operators

we shall mean bounded linear transformations of %? into itself. Their alge-

bra is denoted by â§(%?), while Jlfffi) is the algebra of all compact oper-

ators. By an ideal we mean a two-sided ideal. We say that S? c 3è'(<%*)

is a Lie ideal in &(<%") if 5? is such a linear manifold, that A g a3(ß?)

and fi G y imply AB - BA G 5f . Let S (st) and f(si) denote the ide-

als of 3$(%") and 3lf(ßlf), respectively, generated by the set si c 3?(2P).

Clearly <f(sf) D ^(si), but equality does not hold in general. For example

if a < 0, J^diagin")) ^ f(diag(n)) (see [2]). But in the case when si is

countable and f(sf) is a Lie ideal in &(W), we have f(s#) = S(si),

i.e. f(si) is an ideal in £%(%?) too (see [3, 4. Example]). The answer to

whether f({A\) = S ({A}) if 0 < A g 3?(&) appears in [2] along with the

question: Is the above implication true in general, i.e. without any restriction

on the cardinality of j/ ? In the present paper we discuss the case si = %(A)

where 0 < A g &{&) and W{A) = {UAU* : U* = U~1}, that is, when si

is the unitary orbit of a positive compact operator. Then ^(^(A)) is a uni-

tary invariant manifold, so by [1, Theorem 1] and [3] it is also a Lie ideal in

3S(%?) (we refer to [3] for generalization of any result in [1] to the nonsepara-

ble case). But it turns out that f(í¿(A)) is not an ideal in 3§(%?) when e.g.

A = diag(«~').
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The main result

For a compact operator A, sn(A) denotes the « th eigenvalue of the square-

root of A* A , (« = 1,2,...) (see [4]). We introduce the following notation:

i=i

The following lemma is well-known (see e.g. [4, II. Lemma 4.1]):

Lemma 1. If A g f%(%f) and P is an arbitrary orthogonal projection with

rank P < «, then

Sn(A)>\tr(PAP)\.

Lemma 2. If 0 < A e 3?(%?) has infinite rank and either K or L is compact,

then

sn(KAL) = o(sn(A)).

If we also have J2sn(A) = oo, then

Sn(KAL) = o(Sn(A)).

Proof. For the first statement we refer to [2, Lemma 1]. For the second one we

note that {Sn(KAL)/Sn(A)}'^'=x is the transform of the zero-sequence

{sn(KAL)/sn(A)}™=x with the regular matrix T = [t..], where tlJ. = s ¿A)/S ¡(A)

if j < / and zero otherwise.

Lemma 3. If D is a positive operator and P and R are finite rank orthogonal

projections with P < R, then

tr(RDR = tr(PDP) + tr((R - P)D(R - P)) > tr(PDP).

Proof. The equality is obvious, if we choose an orthonormal basis of ran P and

extend it to a basis of ran 7? and then to a basis of ^. For the inequality we

note that (R - P)D(R -P)>0.

Now we can prove the following

Theorem. Suppose that A G 3?(%f), 0 < A,

oo

(1) ^5fl(^) = 0O

n=\

and

(2) liminf%^> = i
K-O0      Sn(A)

for every positive integer k. Then /(^/(A)) £S({A}).

Remarks. It is easy to prove that (2) with k = 2 implies (2) for every integer

k > 1 . Conditions (1) and (2) can be satisfied e.g. by A — diag(«~ ) because

then Sn(A) = log« + rn  for some rn G [0,1] and hence we can even write

lim instead of liminf in (2). But, for any nonincreasing sequence {an} with
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an-*0 and J2 an = oo, we can select a subsequence {an } , such that diag(a^)

satisfies the conditions of the theorem.

We know from [ 1, Theorem 1 ] that the unitary invariant linear submanifolds

are exactly the Lie ideals in 3§(%?). So fC%f(A)) in the theorem is such a

Lie ideal, which is an ideal in JTffi) but is not an ideal in 3§(%?) (see the

question at the end of [2]). Particularly JF(ii(Ä)) is not countably generated

as an ideal of X(2tr) (see [3]).

Proof. Let sn = sn(A) and Sn = Sn(A) for shortness. Let {en}°f be an or-

thonormal sequence in ßf such that Aen = snen . Fix a strictly increasing

sequence { nk} of positive integers, for which

(3) lim Spfc = 1
k—»oo    o„

for every positive integer TV. The existence of such a sequence follows from

(2). By choosing a suitable subsequence if necessary, and calling it {nk} , we

can assume that

S.
(4) lim -^ = 0

*-°° \k

Clearly (3) remains true. Let ^ = span(e, ,e2, ... ,en ), and let Pk be the

orthogonal projection of %? onto %?k . We need the following lemma:

Lemma 4. Suppose that for the compact operator B we have

Sn (B)
(5) liminf-^-—= 0.

Suppose furthermore that there exist positive integers M, N, complex num-

bers a¡, unitary operators  U¡  and bounded operators K-,  L.  on %?   (i =

1,2, ... ,N, j = 1,2, ... ,M) such that either K or L is compact (j =

1,2, ... M) and

N M

(6) 0 = B + J2 a. U,A Vi+ ¿2 KjALj ■
¡=\ j=\

Then T,tiai = 0-

Proof. Let 7?^ be the orthogonal projection onto spanflj,^, U^k). Multiply

both sides of (6) from the left and from the right by Rk , and take traces:k

p  v a r   o(7)       0 = XT(RkBRk) + ¿2 a,*(Rk "¡AU* Rk) + tr   J2RkKjALjR
f-i \j=\

Clearly Rk > UiPk U*   (k = 1,2, ... , i = 1,2, ... , N). So we have

\. = tr(TV^) < tTdJ'RMAU'RM)

= U(RkU,AU;Rk) < SNnk(U,AU;) = sNnt.
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The first inequality follows from Lemma 3, since U*Rk Ui > Pk , and the second

one follows from Lemma 1, because rank Rk < Nnk . Consequently we have

(8) tr(RkUiAU;Rk)-S¡
"k

<SV   -s
—     Nnk nk

Subtract Sn £, al from both sides of (7):

-EaiSnk=«(Rk*Rk)+Tlai(*(RkU,AUÏRk)-Snk)
i=l i=\

(M

XXvLA

Using (8) and Lemmas 1 and 2 we get

■5>¿
n*

i=i

M

< I Xr(RkBRk)\ + (SNnk -SJY1 K-l + E I ̂ WW
i=i 7-1

< SNHt(B) + (SN„k -SJY1 \«i\ + °(SNnk) (* - 00).

So

1=1

<
'Nnk (B)

+ SNnk        ,lp,     ,   ,   °(SNnk)SNnk

"k \     nk J   ,_]

This holds for every k . The third term converges to 0 as k —► oo and so does

the second term by (3). Taking liminf of both sides we obtain

5>i=i
< lim inf

k—»oo

'AT/i, (B)
< TV lim inf

k—»oo

S„,.(ß)
"A-

0

by (5). This proves Lemma 4.

Now we return to the proof of the theorem. Let F = YfkL\(R2k ~ ^2/fc-i)'

PQ = 0, and E = ££1.(7* - Pk_{). First we put B = FA. We claim, that

lim —^-= 0.
k—»OO       0„

«2/1+1

Indeed,

|(7i)<5n2t+|((JrJ-7'2,+ 1+JP2fc)^)

_ c — CS       — 5    )

<52« +^„     -5„
—       ¿«2*-H «2* "2*+l

which, by (3) and (4) proves our claim. So B = FA satisfies condition (5) of

Lemma 4. Similarly, the same can be proved for B' = (E - F)A = A - FA .

Assume now, that (6) is satisfied by B = FA . Then

AM-l M

0 = A-FA + ¿Tt-ajUiAU* + Y^KjA(-Lj)
i=i ;=i
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where aN+x — 1  and UN+X = id. This means, that—although with different

parameters—B' satisfies (6) too. So £^, a{ = 0 and Y^!=\ ~a¡ = 0> tnat is

aN+x = 0, a contradiction. Consequently (6) can hold for B — FA with no

parameters, in other words FA <£ ̂ {^(A)). But clearly FA G J*(si), so the

proof of the theorem is complete.

Traceable operators

Let 5?{A) be the Lie ideal in &{&) generated by A G &{&). By [1,

Theorem 1]

S?(A) = span(%f(A)) =

IjhaMAV- :-N->0, a.eC, U* = U~x (i = 1,2, ...N)\ .

Lemma 4 suggests the following

Definition. Let us say that an operator A is traceable if any of the following

three equivalent conditions hold:

(i) There exists a linear functional / on 2f(A) such that f(UAU*) = 1

for every unitary operator U.

(ii) £f-, a^AU* = 0  (o* = U~X) implies £f_, a, = 0.

(iii) 0^{£f=1A,.t/^C/;:£f=1A,.= l}.

For the implication (ii) => (i) we (well-)define / by /(£/=1 aXf.^U*) =

£/=1 a{.. If A is traceable, we put ¿¿¡¡(A) = kerf. ¿¿?0(A) is a Lie ideal in

âê^). If A is as in the theorem, then A is traceable even in the stronger sense

that / can be extended to a unitary invariant linear functional / on f(%(A))

so that f<Se^(A)) c ker/. Assume furthermore that A = A'®0 g âS^®^).

Then Á ® (-A1) g 5f0(A), so A g SLZ^A)) but clearly A £ f(^(A)), i.e.
Lemma 4 itself gives a counterexample different from the first one.

It is clear that if the image of A in the Calkin algebra is a nonzero constant,

then A is traceable. On the other hand, if the image of A is not a constant

in the Calkin algebra, then A is not traceable. To see this, suppose that /

is a unitary invariant linear functional on Sf(A). By a theorem of Topping

(see [1, Corollary 1]) S'(A) = &(&) = ^(SP), where &> is an orthogonal

projection with dim ker P = dim ran P. But P = Px+ P2, where Px and P2

are unitary equivalent to P. So f(P) = 2f(P) = 0, which implies / = 0

on 3§(^) — S'(A). This shows that A is not traceable. So,—assuming %?

is separable—among the noncompact operators we can identify the traceable

ones. But in the case of compact operators the question seems more difficult.

It is clear that if K g S£(%?) then K © (-K) is not traceable, and that a

trace-class operator with nonzero trace is traceable. The theorem of this paper
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gives an example of a traceable operator outside of trace-class. To see that even

0 < A ^¿ 0 does not imply traceability, consider the following example:

2-'diag(l,0,0,2-|,2-1,0,0,4-|,4-1,4-1,4-1,0,0,0,0,0,0,0,0,...)e0

+ 2-1diag(2-1)l,0,0,0,2-1,0,0,0,0,0,4-1,4-1,4-',4-1,0,0,0,0,...)©0

+ 2_1diag(2_1,0, l,0,0,0,2-',0,0,0,0,0,0,0,0,4-1,4-1,4_1,4-|,...)e0

= diag(l,2-|,2-1,4-|,4-|,4-1,4-1,8-',8-1,8-1,8-1,8-1,8-1,8-1,...)©0

It would be interesting to know what the traceable compact operators exactly

are.
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