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TOPOLOGICAL REFLECTIONS REVISITED

V. TRNKOVÁ, J. ADÁMEK AND J. ROSICKY

(Communicated by Andreas R. Blass)

Abstract. Two full reflective subcategories of %/i are constructed whose in-

tersection is not reflective.

Introduction

Answering questions put by J. R. Isbell in 1964 and by H. Herrlich in 1967

(see [I] p. 33, [H,]) we show that both the category of uniform spaces and

the category of topological spaces contain two reflective subcategories* whose

intersection is not reflective. This improves the result obtained in [AR] that

large intersections of reflective subcategories of ¡Jé/i need not be reflective.

In the first version of our paper we used deep topological constructions to

get two reflective subcategories of S7é>/i with a nonreflective intersection. It has

turned out, however, that a much easier categorical approach yields the same

result. We prove that every "reasonable" category has the following property:

for each class ^# of morphisms with a set of domains, the orthogonal subcat-

egory J[ is an intersection of two reflective subcategories. This solves the

problem, since 3ë>/i is "reasonable" and in [AR] we have shown that it has a

class ^# of morphisms with a common domain such that Jf is not reflective

in %/i.

We also apply our technique to locally presentable categories. We have shown

in [ART] that the set-theoretical Weak Vopénka's Principle (which states that

rf*-c¿op cannot be fully embedded into S/vz, the category of graphs) is equiv-

alent to the statement that intersections of reflective subcategories of locally

presentable categories are always reflective. We now conclude the same result

for finite intersections. More concretely: the category of graphs has two reflec-

tive subcategories with a nonreflective intersection iff Weak Vopénka's Principle

is false.
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We work within Gödel-Bernays-von Neuman set theory, assuming the axiom

of choice for classes. We are much indebted to R. Borger for pointing out several

mistakes in an earlier version of our paper.

I. Orthogonal subcategories

Recall that for each collection Jf of morphisms of a category 3?, Jf de-

notes the subcategory of all objects K orthogonal to all ^#-morphisms m : A -*

B (i.e. for each g: A —> K there exists a unique h: B —> K with g = h- m).

Definition. A category is said to be ranked provided that each object K has a

rank with respect to extremal monos, i.e. there exists a regular cardinal n such

that hom(K,—) preserves «-direct unions of extremal monos.

Remark. Ranked categories are precisely the bounded categories of P. J. Freyd

and G. M. Kelly [FK] for the case of (epi, extremal mono)-factorizations. From

Theorem 4.1.3 in [FK] it follows that every ranked, cocomplete and co-well-

powered [and hence, (epi, extremal mono)-factorizable] category 5£ has the

following property:

<P   n S? is a reflective subcategory of 3?

for each small collection <P of ^-morphisms and each full epireflective sub-

category J? of J'. In fact, the conclusion of the mentioned theorem is that

(<P U *F) is reflective for each class *F of epimorphisms in 3Ç . It is sufficient

to apply the result to the class *¥ of all reflections of ^-objects. The only

difficulty in applying the above theorem lies in the fact that in [FK] the basic

category is always assumed to also be complete. It has been shows in [Ke] that

this assumption is superfluous; e.g. from the proof of Theorem 10.2 in [Ke] it

follows that the above theorem of [FK] holds without completeness (although

the formulation of 10.2 is not sufficient).

Theorem. Let 3f be a ranked, cocomplete, and co-well-powered category. Then

for each class y% of morphisms all domains of which form a set the following

holds: J?    is an intersection of two reflective subcategories of 3Í.

Proof I. Denote by Sf the subcategory of 3Í consisting of precisely those

objects L such that for any m: A —> B in •# and g : A —► L there exists at

most one h: B —> L with g = h ■ m . We will show that J¿? is epireflective in

3Í . The reflection of an object K of 3? is performed stepwise by defining the

following chain K¡ —^ K. of epimorphisms (z, j e Ord, i < j) :

(a) K0 = K.

(b) Given K¡, stop if K¡ G J?, and else, find m: A —> B in Jt and

distinct morphisms h , h' : B —> K with h • m = h' ■ m . Let e¡ ¡+x : K; —> K¡+x

denote the coequalizer of h and h'.

(c) Given a limit ordinal i, define K¡ and (ej¡)J<l as a colimit of the

preceding chain.
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Since 3¡f is co-well-powered, the construction eventually stops, yielding K¡ e

S?. It is obvious that the epimorphism c0/ : K —► K¡ is a reflection of K in

II. To prove the theorem, we present two reflective subcategories of Sf (and

hence, of 3f) the intersection of which is ^# . Observe first that the epi-

reflectivity of Sf clearly guarantees that Sf n %?'L is a reflective subcategory

of 5? for each small collection %f of ^"-morphisms (by the remark above).

III. Denote by {A¡\t e T} the set of all domains of ^#-morphisms. It is

clearly possible to find nonempty sets i| ((i e 7 and z e Ord) of morphisms

of 3? such that all Jft ;-morphisms have the domain At and

^=U   U Ay
/er/eord

For each ^-object L and each morphism g: At —> L denote by d(g) the

smallest ordinal i such that there exists m: A¡^> B m J£¡ ¡ with g ^ h ■ m

for all h : B —> L ; put d(g) — oo if no such ordinal i exists (where we consider

oo larger than all ordinals). Put

d(L) = {(t ,i)eTx Ord \d(g) = i   for some g: At -* L},

and observe that rf(L) is a set since it can be coded by \JieT hom(A¡ ,L) and

T is a set. Observe that (t,i) e d(L) implies that i is an ordinal (not oo) and

i > 0. For each class 77 ç T x Ord denote

2fH = {Le 5f\d(L) n 77 = 0}.

IV. For each set 77 ç T x Ord we will prove that 2fH is a reflective sub-

category of Sf. By II, it is sufficient to find a set 2? of ^-morphisms with

S?H = Sfntff^ . For each (t, z) e 77 let us form the multiple pushouts (in 3?)

of UjK^tj andof U^/^j:

;<<

íZZZtí?

,     m'    ni       m'    ni ill«

y<i

We have the canonical morphism c¡ ¡ : Pt ( —» Pf' (. (defined by c¡ ¡-m = 7n   for

all m e U,<,^ ,) • We wiU verify that

¿fH=2ff]{cti\(t,i)GH}±.

In fact, let L e S?H . For each f:P¡¡^L put

g = / -m- m: At —► L, independent of m g\^J^¡ :.
j<i
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(Observe that i ^ 0 and hence U,-</^ ,- = 0 •) Since g factors through each

element of J[t for j < i, it follows that d(g) > i. Then (t,i)eH implies

d(g) ¥" i (for else, L £ -2^). and hence, for each m e \Jj<i-^t j there

exists hm, : Bm, —► L with g — hm, • m . Consequently, there exists a unique

h : P[ j. —► L with h-m =hm, for all m e (J ,<, -^ , • It follows that f = h-c¡ ¡

(since L&Sf implies hm — f-m for each m , and hence, / -m = h • c¡ ¡-m)

which proves L e {c¡ ¡}   .

Conversely, let L e 2f n {c¡ ¡\(t,i) € 77}"1 . For each g: At -* L with

d(g) = z G Ord we are to show that (t ,i) $. 77. Suppose the contrary, then

for each m e U,</^ ; we nave ^m: #m -» L with g = hm • m, and there

exists a unique /: P( ¡^ L with /-m = /zm(w e U,</-^ ,) - Then L e {c; .}

implies the existence of h : P' —► L with f = h ■ c. ,—thus, each m e ^# ,

fulfills g = (h ■ c¡ (. • m) ■ m , in contradiction to d(g) = i.

V. We are going to find a disjoint decomposition

T x Ord = 77 U 77

such that both S?H and 2^ are reflective subcategories of Sf . This will con-

clude the proof since

5fHnSf-n={LeS?\d(g) = oo    for each g: ,4, ̂ L,    t e L) = J?1-

We first write the class 2f°   of all J2?-objects in the form

;eOrd

where each Sf¡ is small. Then we will define, by transfinite induction, sets 77;

and 77;   (i e Ord) such that

(i) 77. U 77 ç r x Ord and 77, n 77. = 0 for all i, j G Ord,

(ii) for each class 77 ç T x Ord such that H¡ Ç H Ç (T x Ord) - 77,

all ^-objects have a reflection both in ¿?H and in 5f-^, where 77 =

(TxOrd)-77.

This will be sufficient because the classes 77 = U,eod "/ and H - (T x Ord) -

77 [2 U,GOrd ̂ /J then clearly satisfy the above requirement.

(a) First step. For each t e T choose an ordinal h0 larger than any ordinal

i with (/, z) e U¿Gvá rf(L) ' and Put

770 = {(Z,z)|i€r,z'</z0}.

Since 770 is a set, each Jz?-object has a reflection r0: L —» L0 in ,5^ , see IV.

Choose an ordinal h0 larger than any ordinal i with (z\ i) e DLe_^d(L0), and

put

770 = {(/,/)|ie7\A0<i<Ä0}.

It is our task to show that for each class 77 ç T x Ord with 770 ç 77 and

HQ ç H = (T x Ord) -77, all ^-objects have a reflection in SfH  as well
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as Jzf-fi. The latter is trivial since -z^ ç 2?-^: for each L e £f0 and each

(/,/') G d(L) we have i < h0 (by its choice of h0) and thus (t,i) G 77—

consequently, d(L) n 77 = 0 . Furthermore, each .2^-object L has a reflection

in .2^ , viz., rQ: L —> LQ . In fact, H0Q H implies .2^ ç .2^ , and since rQ is

a reflection in 5fH , it is sufficient to verify that LQ G SfH . Each (Z, i) g <7(7,0)

satisfies both i > /z0 (since L0 G J2^ ) and z < h0 (by the choice of h0), and

thus (t, i) G 770 . Consequently, ci(7,0) n 77 = 0 .

(b) Induction step. Let z be an ordinal for which 77^ and 77^ are already

constructed for all j < i. We define 77  and 77   as follows.

Since U,<,77 is a set, each ^-object L has a reflection r: 7. —» L, in

¿j" i w , see IV. Choose an ordinal /z, larger than each k with (t,k) g

\JLe^ d(L¡), and put

/j\ = I (t,k) | î € T,k < h¡ and k ^[JhA .

We claim that whenever a class H ç. T x Ord fulfills M ■<,- 77 ^ 77 and 77, ç

77 = (T x Ord) - 77, then each ^-object has a reflection in S?H. In fact,

tt: L -» 7., is such a reflection: since Jz^ ç _2?.   ^ , it is sufficient to prove

that L¡ G =2^ (for each L G =2p. In fact, each (t,k) e d(L¡) satisfies both

* ^ U/<, 77   (since L, G -2Î i   w ) and z< < /z,. (by the choice of h¡), and thus,

(t,k)e 77,.. Consequently, d(L¡) n 77 = 0 .

Analogously, using the (already established) 77,, we know that each ^-object

L has a reflection r,. : L —> L, in .2Í i    j/ . Choose an ordinal /z, larger than

each k with (t,k) G \JLe^ d(L¡), and put

77,. = ¡ (t,k) | Z G 7\    /c < /z,: and k £ |J 77^ I .
I ><'      J

Then each ^-object L has a reflection in .2^- whenever 77 ç T x Ord fulfills

Uy<¿ 7/,- ç 77 and (J7</ 77jC77=(Tx Ord) - 77. In fact, r, : L ^ 7J, is such
a reflection.

Problem. Is the hypothesis of a small collection of domains essential in the

theorem? We can only present a category which has a subcategory which fails

to be an intersection of a set (let alone of two!) reflective subcategories of

3?. Nevertheless, 3f is cocomplete, ranked, but not co-well-powered. (The

example is a small adaptation of Example 5 in [RT].)

3? has objects (X, P¡, R¡)¡€0rd where X is a set, P, ç X and R¡ QXxX

for i G Ord, such that (1) P, n P. = P, n Pk for all z / ; and i # A: ; and (2)

R¡nR¡ t¿ 0 implies /?, = Ä^ for all z < / and i < k . Morphisms /: (X, P¡,

R¡) -* (X', 7^', /?') are functions satisfying f(P¡) ç p' and (/ x /)(/?) ç 7*;
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(i G Ord). It is a routine verification to see that 3Z is a legitimate category

which has all the above properties.

Consider the following morphisms f : A. —► Bj of 3f   (j G Ord) :

^. = ({O},P,,0),
Pj = {0} and P,. = 0     for all i¿j,

5. = ({0,l},P,,7v,),

^ = {0},
A. = {(0,l)}and

P¡=R¡ = 0    f©ralW#/,./}(0) = 0.

The orthogonal subcategory {f}± consists of all ^-objects such that for each

x G P, there exists a unique y with (x ,y) G R¡. This subcategory is no inter-

section of a set of full, reflective subcategories of 3f—the proof is analogous

to that in [RT].

II. TOPOLOGICAL REFLECTIONS

We now turn to .%/? and other concrete subcategories (where concrete means

equipped with a faithful functor to Set). Recall that for concrete categories 3t

and S? an almost full embedding is an embedding E : 3t —> Sf which either

is full or (1) in 2? each constant map carries a morphism and (2) for X,

Ye3f,

E(hom(X,Y)) = hom(EX,EY) - {f\f: EX -> EY is a constant map} .

In [AR] we have proved the following result.

Proposition. For the following category W and for each concrete category 3f

with an almost full embedding E:W^3f, the subcategory {Ea0i}ieOrd is not

reflective in 3f. The objects of W are A¡, B¡ (i g Ord) and C, the morphisms

are freely generated by the following morphisms (i, j, k G Ord) :

a..: A¡ -* Aj for i<j,

ßik:A,^Bk,

7i:C-Ai,

and the following relations:

àjj = atj ■ a¡¡        for i <t < j,

ßik = ßjk • a,j       f°r i < J (and al1 k) '

ßik • y i = ßkk ■ yk    for í>k-

Corollary. Let 3t be a concrete, co-complete, co-well-powered, and ranked cate-

gory with an almost full embedding of the above category W into 3T. Then 3f

has two reflective subcategories with a nonreflective intersection.
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Proof. In fact, the subcategory {Ea }    is nonreflective, and by the above the-

orem, it is an intersection of two reflective subcategories.

Examples.    (1) .25/? (the category of topological spaces) has two reflective sub-

categories with a nonreflective intersection.

In fact, Koubek proved in [Ko] that the category ¿7é/i3\_ of all completely reg-

ular spaces has the following property: every concretizable category (in particu-

lar, ^ above) has an almost full embedding into .2¿yz3i . Thus, ïTô/i satisfies

all hypotheses of the above corollary.

(2) %n.i/ (the category of uniform spaces) has two reflective subcategories

with a nonreflective intersection.

To see this, use the same result of Koubek: since <25/z3i has a full embedding

into Wni/ (via fine uniformities, see [I]), we have an almost full embedding of

£P into %ñ¿/ . All other hypotheses of the above corollary are easy to verify;

the fact that f¿n¿/ is ranked can be easily seen since extremal monos in í¿/i¿/

are embeddings of subspaces, and each uniformly continuous pseudometric of

a subspace can be uniformly extended to the whole space (see [I]).

(3) Whereas .25/z and %ñ¿/ are certainly basic topological categories, the

nonreflective intersections we have presented above are not quite illuminating.

In contrast, in the category 2 - <2¿yz of bitopological spaces we have a very

illustrative example: the subcategory 3í¡ of all spaces whose z'th topology is

compact T2(i = 1, 2) is reflective in 2 - <%/?, but 3?x C\3t2 is not (see [AR]).

Analogously, in the category of pseudotopological spaces there is an illustra-

tive (but large) nonreflective intersection: the subcategory 3t of all compact

T2 pseudotopological spaces (i.e. such that each ultrafilter has a unique limit) is

not reflective (see [BK]). But the subcategory 3Za of all a-compact T2 pseudo-

topological spaces (i.e. such that each ultrafilter with a member of cardinality

< a has a unique limit) is reflective, and 3f = {\a^Card^a ■

Remark. For locally presentable categories, the above theorem also clarifies the

situation completely:

( 1 ) We have proved in [ART] that in a set theory satisfying Weak Vopénka's

Principle, each subcategory of a locally presentable category 3f closed under

limits is already reflective, hence intersections of reflective subcategories are

reflective. Weak Vopënka's Principle states:

(WVP) ¿Wop cannot be fully embedded into %ra

(cfro(op is the dual to the ordered class of all ordinals, and ^a is the category

of graphs [=binary relations] and homomorphisms).

(2) The question of intersecting two reflective subcategories of a locally

presentable category is, therefore, interesting only in a set theory satisfying the

negation of Weak Vopënka's Principle; briefly ~~I WVP. Now, this assumption

is certainly consistent with set theory because WVP implies the existence of

measurable cardinals (and, conversely, the existence of huge cardinals implies

that WVP is consistent), see [ART].



612 V. TRNKOVÁ, J. ADÁMEK. AND J. ROSICKY

Proposition. Assuming ~\ WVP, each of the following categories has two reflec-

tive subcategories with a nonreflective intersection:

posets and strictly increasing maps,

semigroups and homomorphisms,

rings and homomorphisms.

Proof. Each of the mentioned categories is locally presentable and hence ranked,

strongly cocomplete and co-well-powered. It remains to prove that W above can

be almost fully embedded in each of them. For S/s-a this has been (implicitly)

performed in [ART]: we have a full embedding E: fê —* "&ra where (in the

notation of the proof of Theorem 3 of [ART]), EC = FC3 5, EA¡ = U¡<¡ D¡,

EBk = Bk , Ea¡] is the co-product injection, Eßjk = 6¡k and Ey¡ is the

(unique) embedding of FC3 5 into 7), -♦ JJ <,7>.

The rest is clear since, as proved in [PT], each of the remaining categories

3Z has an almost full embedding of "gs-a into 3? .
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