STARSHAPED UNIONS AND NONEMPTY INTERSECTIONS OF CONVEX SETS IN R^d

MARILYN BREEN

(Communicated by William J. Davis)

ABSTRACT. Let \mathscr{G} be a nonempty family of compact convex sets in \mathbb{R}^d , $d \ge 1$. Then every subfamily of \mathscr{G} consisting of d+1 or fewer sets has a starshaped union if and only if $\cap \{G: G \text{ in } \mathscr{G}\} \neq \emptyset$.

1. INTRODUCTION

We begin with some definitions. Let S be a subset of \mathbb{R}^d . For points x and y in S, we say x sees y via S if and only if the corresponding segment [x, y] lies in S. Set S is called *starshaped* if and only if there is some point p in S such that p sees via S each point of S, and the set of all such points p is the (convex) kernel of S.

A familiar theorem by Krasnosel'skii [4] states that for S a nonempty compact set in \mathbb{R}^d , S is starshaped if and only if every d + 1 points of S see via S a common point. In studying starshaped unions of sets, Kołodziejczyk [3] has proved that for \mathscr{F} a finite family of closed sets in \mathbb{R}^d , if every d + 1members of \mathscr{F} have a starshaped union, then $\cup \{F: F \text{ in } \mathscr{F}\}$ is starshaped as well. In this paper, we examine the relationship between starshaped unions and nonempty intersections of compact convex sets in \mathbb{R}^d to obtain the following Helly-type analogue: Let \mathscr{G} be a nonempty family of compact convex sets in \mathbb{R}^d , $d \ge 1$. Then every subfamily of \mathscr{G} consisting of d+1 or fewer sets has a starshaped union if and only if $\cap \{G: G \text{ in } \mathscr{G}\} \neq \emptyset$. (Of course, when members of \mathscr{G} have a nonempty intersection, they will have a starshaped union as well.) The proof is suggested by an argument of Klee [2].

Throughout the paper, $\operatorname{conv} S$, $\operatorname{int} S$, $\operatorname{bdry} S$, and $\ker S$ will denote the convex hull, interior, boundary, and kernel, respectively, for set S. For distinct points x and y, L(x, y) will be the line they determine. The reader is referred

Received by the editors September 13, 1988 and, in revised form, March 20, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 52A35, 52A30; Secondary 52A20.

Supported in part by NSF grant DMS-8705336.

to Valentine [6] and to Lay [5] for a discussion of related concepts and to Danzer, Grünbaum, Klee [1] for a survey of Helly-type results.

THE RESULTS

The following definition is needed.

Definition. Set A is said to surround set B in the k-flat F, $k \ge 1$, if and only if A contains a (k-1)-sphere S such that B lies in the bounded component of $F \sim S$.

Our preliminary lemma is motivated by an argument of Klee [2].

Lemma 1. Let K_1, \ldots, K_l be nonempty compact convex sets in \mathbb{R}^d , $d \ge 1$, $l \ge 2$, with $\cap \{K_i: 1 \le i \le l\} = \emptyset$ and with $a_i \in \cap \{K_j: 1 \le j \le l, j \ne i\} \ne \emptyset$ for $1 \le i \le l$. Then there are two flats H and L of dimension l-1 and d-l+1, respectively, meeting in a single point, such that

- (1) $L \cap K_i = \emptyset$ and $a_i \in H$, $1 \le i \le l$, and
- (2) $H \cap (\cup \{K_i : 1 \le i \le l\})$ surrounds $H \cap L$ in H.

Proof. Clearly Helly's familiar theorem, together with the hypothesis of the lemma, imply that $2 \le l \le d + 1$. We proceed by induction on d. If d = 1, then l = 2, and it is easy to see that the lemma holds. For d > 1, assume the result is true for integers k, $1 \le k \le d$, to prove for d. Since $\bigcap\{K_i: 1 \le i \le l\} = \emptyset$, let H_0 be a hyperplane strictly separating the compact convex sets K_1 and $\bigcap\{K_i: 2 \le j \le l\} \neq \emptyset$.

In case l = 2, let $H = L(a_1, a_2)$ and let $L = H_0$. If $l \ge 3$, choose $\{a'_i\} = [a_1, a_i] \cap H_0$, $2 \le i \le l$. Since $a'_i \in \cap\{K_j: j \ne 1, i\}$, every l - 2 sets from $\{K_i \cap H_0: 2 \le i \le l\}$ have a nonempty intersection. However, H_0 is disjoint from $\cap\{K_j: 2 \le j \le l\}$, so $\cap\{K_i \cap H_0: 2 \le i \le l\} = \emptyset$. Using our induction hypothesis in the (d-1)-flat H_0 , there exist flats H', L in H_0 having dimension (l-1) - 1 = l - 2 and (d-1) - (l-1) + 1 = d - l + 1, respectively, meeting in a single point, such that

- (1) $L \cap K_i = \emptyset$ and $a'_i \in H'$, $2 \le i \le l$, and
- (2) $H' \cap (\cup \{K_i : 2 \le i \le l\})$ surrounds $H' \cap L$ in H'.

Finally, let H be the flat determined by H' and a_1 . Clearly $a_i \in L(a_1, a'_i) \subseteq H$ for $2 \le i \le l$, and hence $a_i \in H$, $1 \le i \le l$. Moreover, since

bdry conv
$$\{a_1, \ldots, a_l\} \subset H \cap (\cup \{K_i : 1 \le i \le l\}),$$

 $H \cap (\cup \{K_i : 1 \le i \le l\})$ surrounds $H' \cap L = H \cap L$ in H. This finishes the induction and completes the proof of the lemma.

Theorem. Let \mathscr{G} be a nonempty family of compact convex sets in \mathbb{R}^d , $d \ge 1$. Then every subfamily of \mathscr{G} consisting of d + 1 or fewer sets has a starshaped union if and only if $\cap \{G: G \text{ in } \mathscr{G}\} \neq \emptyset$.

Proof. Clearly when $\cap \{G: G \text{ in } \mathcal{G}\} \neq \emptyset$, then every subfamily of \mathcal{G} has a starshaped union whose kernel contains $\cap \{G: G \text{ in } \mathcal{G}\}$. Hence we need only establish the reverse implication.

818

Assume that every d + 1 or fewer sets in \mathscr{G} have a starshaped union, to show that $\cap \{G: G \text{ in } \mathscr{G}\} \neq \emptyset$. Note that for arbitrary sets G_1 and G_2 in \mathscr{G} , $G_1 \cup G_2$ is starshaped. Since both G_1 and G_2 are closed, this implies that $G_1 \cap G_2 \neq \emptyset$, and thus every two members of \mathscr{G} intersect. By the familiar Helly theorem, it suffices to prove that every d + 1 or fewer members of \mathscr{G} have a nonempty intersection, $2 \leq d$.

Suppose on the contrary that for some maximal integer l-1, $2 \le l-1 \le d$, every l-1 members of \mathscr{G} have a nonempty intersection but some l members of \mathscr{G} have an empty intersection. Say $G_1 \cap \cdots \cap G_l = \varnothing$ for G_i in \mathscr{G} , $1 \le i \le l$. By Lemma 1, there exist flats H, L of dimension l-1, d-l+1, respectively, meeting in a single point, such that

(1) $L \cap G_i = \emptyset$, $1 \le i \le l$, and

(2) $H \cap (\cup \{G_i : 1 \le i \le l\})$ surrounds $H \cap L$ in H.

However, this contradicts the fact that $\cup \{G_i : 1 \le i \le l\}$ is starshaped. Our supposition is false, and $\cap \{G : G \text{ in } \mathscr{G}\} \ne \emptyset$, finishing the proof of the theorem.

Remark. It is interesting to observe that Theorem 1 holds without the requirement that members of \mathscr{G} be compact, provided \mathscr{G} is a finite family whose members are closed: In the proof, simply choose $x \in \ker(\cup\{G_i: 1 \le i \le l\}) \ne \emptyset$, $a_i \in \cap\{G_j: 1 \le j \le l \ j \ne i\}$, and define $T \equiv \operatorname{conv}\{x, a_i: 1 \le i \le l\}$. Then apply Lemma 1 to $\{T \cap G_i: 1 \le i \le l\}$. The finite version of Helly's theorem completes the argument.

However, the theorem fails without the restriction that members of \mathcal{G} be closed, as the following easy example illustrates.

Example 1. Let s_1, \ldots, s_{d+1} be vertices of a *d*-simplex in \mathbb{R}^d , with $w \in int \operatorname{conv}\{s_1, \ldots, s_{d+1}\}$. For $1 \le i \le d+1$, define

$$S_i = \text{conv}\{w, s_i : 1 \le j \le d + 1, j \ne i\}$$

and let $T_1 = S_1 \sim \{w\}$. Every d (or fewer) of the sets $T_1, S_2, \ldots, S_{d+1}$ intersect and hence have a starshaped union. Furthermore, $T_1 \cup S_2 \cup \cdots \cup S_{d+1} =$ conv $\{s_1, \ldots, s_{d+1}\}$ is convex and hence starshaped. However, $T_1 \cap S_2 \cap \cdots \cap S_{d+1} = \emptyset$.

Acknowledgment

The author wishes to thank the referee for Lemma 1, which greatly simplifies and generalizes the proof of the theorem.

References

- 1. Ludwig Danzer, Branko Grünbaum, and Victor Klee, *Helly's theorem and its relatives*, Convexity, Proc. Sympos. Pure Math., Vol. 7, Amer. Math. Soc., Providence, RI, 1962, pp. 101–180.
- 2. V. L. Klee, On certain intersection properties of convex sets, Canad. J. Math. 3 (1951), 272-275.
- 3. Krzysztof Kolodziejczyk, On starshapedness of the union of closed sets in \mathbb{R}^n , Colloq. Math. 53 (1987), 193–197.

MARILYN BREEN

- 4. M. A. Krasnosel'skii, Sur un critère pour qu'un domaine soit étoilé, Mat. Sb. (N.S.) (61) 19 (1946), 309-310.
- 5. Steven R. Lay, Convex sets and their applications, John Wiley, New York, 1982.
- 6. F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964.

Department of mathematics, University of Oklahoma, Norman, Oklahoma 73019