STARSHAPED UNIONS AND NONEMPTY INTERSECTIONS OF CONVEX SETS IN R^{d}

MARILYN BREEN
(Communicated by William J. Davis)

Abstract

Let \mathscr{G} be a nonempty family of compact convex sets in $R^{d}, d \geq$ 1. Then every subfamily of \mathscr{G} consisting of $d+1$ or fewer sets has a starshaped union if and only if $\cap\{G: G$ in $\mathscr{G}\} \neq \varnothing$.

1. Introduction

We begin with some definitions. Let S be a subset of R^{d}. For points x and y in S, we say x sees y via S if and only if the corresponding segment [x, y] lies in S. Set S is called starshaped if and only if there is some point p in S such that p sees via S each point of S, and the set of all such points p is the (convex) kernel of S.

A familiar theorem by Krasnosel'skii [4] states that for S a nonempty compact set in R^{d}, S is starshaped if and only if every $d+1$ points of S see via S a common point. In studying starshaped unions of sets, Kołodziejczyk [3] has proved that for \mathscr{F} a finite family of closed sets in R^{d}, if every $d+1$ members of \mathscr{F} have a starshaped union, then $\cup\{F: F$ in $\mathscr{F}\}$ is starshaped as well. In this paper, we examine the relationship between starshaped unions and nonempty intersections of compact convex sets in R^{d} to obtain the following Helly-type analogue: Let \mathscr{G} be a nonempty family of compact convex sets in $R^{d}, d \geq 1$. Then every subfamily of \mathscr{G} consisting of $d+1$ or fewer sets has a starshaped union if and only if $\cap\{G: G$ in $\mathscr{G}\} \neq \varnothing$. (Of course, when members of \mathscr{G} have a nonempty intersection, they will have a starshaped union as well.) The proof is suggested by an argument of Klee [2].

Throughout the paper, conv S, int S, bdry S, and $\operatorname{ker} S$ will denote the convex hull, interior, boundary, and kernel, respectively, for set S. For distinct points x and $y, L(x, y)$ will be the line they determine. The reader is referred

[^0]to Valentine [6] and to Lay [5] for a discussion of related concepts and to Danzer, Grünbaum, Klee [1] for a survey of Helly-type results.

The results

The following definition is needed.
Definition. Set A is said to surround set B in the k-flat $F, k \geq 1$, if and only if A contains a $(k-1)$-sphere S such that B lies in the bounded component of $F \sim S$.

Our preliminary lemma is motivated by an argument of Klee [2].
Lemma 1. Let K_{1}, \ldots, K_{l} be nonempty compact convex sets in $R^{d}, d \geq 1$, $l \geq 2$, with $\cap\left\{K_{i}: 1 \leq i \leq l\right\}=\varnothing$ and with $a_{i} \in \cap\left\{K_{j}: 1 \leq j \leq l, j \neq i\right\} \neq \varnothing$ for $1 \leq i \leq l$. Then there are two flats H and L of dimension $l-1$ and $d-l+1$, respectively, meeting in a single point, such that
(1) $L \cap K_{i}=\varnothing$ and $a_{i} \in H, 1 \leq i \leq l$, and
(2) $H \cap\left(\cup\left\{K_{i}: 1 \leq i \leq l\right\}\right)$ surrounds $H \cap L$ in H.

Proof. Clearly Helly's familiar theorem, together with the hypothesis of the lemma, imply that $2 \leq l \leq d+1$. We proceed by induction on d. If $d=1$, then $l=2$, and it is easy to see that the lemma holds. For $d>1$, assume the result is true for integers $k, 1 \leq k \leq d$, to prove for d. Since $\cap\left\{K_{i}: 1 \leq i \leq\right.$ $l\}=\varnothing$, let H_{0} be a hyperplane strictly separating the compact convex sets K_{1} and $\cap\left\{K_{j}: 2 \leq j \leq l\right\} \neq \varnothing$.

In case $l=2$, let $H=L\left(a_{1}, a_{2}\right)$ and let $L=H_{0}$. If $l \geq 3$, choose $\left\{a_{i}^{\prime}\right\}=\left[a_{1}, a_{i}\right] \cap H_{0}, 2 \leq i \leq l$. Since $a_{i}^{\prime} \in \cap\left\{K_{j}: j \neq 1, i\right\}$, every $l-2$ sets from $\left\{K_{i} \cap H_{0}: 2 \leq i \leq l\right\}$ have a nonempty intersection. However, H_{0} is disjoint from $\cap\left\{K_{j}: 2 \leq j \leq l\right\}$, so $\cap\left\{K_{i} \cap H_{0}: 2 \leq i \leq l\right\}=\varnothing$. Using our induction hypothesis in the $(d-1)$-flat H_{0}, there exist flats H^{\prime}, L in H_{0} having dimension $(l-1)-1=l-2$ and $(d-1)-(l-1)+1=d-l+1$, respectively, meeting in a single point, such that
(1) $L \cap K_{i}=\varnothing$ and $a_{i}^{\prime} \in H^{\prime}, 2 \leq i \leq l$, and
(2) $H^{\prime} \cap\left(\cup\left\{K_{i}: 2 \leq i \leq l\right\}\right)$ surrounds $H^{\prime} \cap L$ in H^{\prime}.

Finally, let H be the flat determined by H^{\prime} and a_{1}. Clearly $a_{i} \in L\left(a_{1}, a_{i}^{\prime}\right) \subseteq$ H for $2 \leq i \leq l$, and hence $a_{i} \in H, 1 \leq i \leq l$. Moreover, since bdry conv $\left\{a_{1}, \ldots, a_{l}\right\} \subset H \cap\left(\cup\left\{K_{i}: 1 \leq i \leq l\right\}\right)$,
$H \cap\left(\cup\left\{K_{i}: 1 \leq i \leq l\right\}\right)$ surrounds $H^{\prime} \cap L=H \cap L$ in H. This finishes the induction and completes the proof of the lemma.
Theorem. Let \mathscr{G} be a nonempty family of compact convex sets in $R^{d}, d \geq 1$. Then every subfamily of \mathscr{G} consisting of $d+1$ or fewer sets has a starshaped union if and only if $\cap\{G: G$ in $\mathscr{G}\} \neq \varnothing$.
Proof. Clearly when $\cap\{G: G$ in $\mathscr{E}\} \neq \varnothing$, then every subfamily of \mathscr{G} has a starshaped union whose kernel contains $\cap\{G: G$ in $\mathscr{\mathscr { G }}\}$. Hence we need only establish the reverse implication.

Assume that every $d+1$ or fewer sets in \mathscr{G} have a starshaped union, to show that $\cap\{G: G$ in $\mathscr{G}\} \neq \varnothing$. Note that for arbitrary sets G_{1} and G_{2} in \mathscr{G}, $G_{1} \cup G_{2}$ is starshaped. Since both G_{1} and G_{2} are closed, this implies that $G_{1} \cap G_{2} \neq \varnothing$, and thus every two members of \mathscr{G} intersect. By the familiar Helly theorem, it suffices to prove that every $d+1$ or fewer members of \mathscr{G} have a nonempty intersection, $2 \leq d$.

Suppose on the contrary that for some maximal integer $l-1,2 \leq l-1 \leq d$, every $l-1$ members of \mathscr{G} have a nonempty intersection but some l members of \mathscr{G} have an empty intersection. Say $G_{1} \cap \cdots \cap G_{l}=\varnothing$ for G_{i} in $\mathscr{G}, 1 \leq i \leq l$. By Lemma 1, there exist flats H, L of dimension $l-1, d-l+1$, respectively, meeting in a single point, such that
(1) $L \cap G_{i}=\varnothing, 1 \leq i \leq l$, and
(2) $H \cap\left(\cup\left\{G_{i}: 1 \leq i \leq l\right\}\right)$ surrounds $H \cap L$ in H.

However, this contradicts the fact that $\cup\left\{G_{i}: 1 \leq i \leq l\right\}$ is starshaped. Our supposition is false, and $\cap\{G: G$ in $\mathscr{E}\} \neq \varnothing$, finishing the proof of the theorem.
Remark. It is interesting to observe that Theorem 1 holds without the requirement that members of \mathscr{G} be compact, provided \mathscr{G} is a finite family whose members are closed: In the proof, simply choose $x \in \operatorname{ker}\left(\cup\left\{G_{i}: 1 \leq i \leq l\right\}\right) \neq$ $\varnothing, a_{i} \in \cap\left\{G_{j}: 1 \leq j \leq l j \neq i\right\}$, and define $T \equiv \operatorname{conv}\left\{x, a_{i}: 1 \leq i \leq l\right\}$. Then apply Lemma 1 to $\left\{T \cap G_{i}: 1 \leq i \leq l\right\}$. The finite version of Helly's theorem completes the argument.

However, the theorem fails without the restriction that members of \mathscr{G} be closed, as the following easy example illustrates.
Example 1. Let s_{1}, \ldots, s_{d+1} be vertices of a d-simplex in R^{d}, with $w \in$ int $\operatorname{conv}\left\{s_{1}, \ldots, s_{d+1}\right\}$. For $1 \leq i \leq d+1$, define

$$
S_{i}=\operatorname{conv}\left\{w, s_{j}: 1 \leq j \leq d+1, j \neq i\right\}
$$

and let $T_{1}=S_{1} \sim\{w\}$. Every d (or fewer) of the sets $T_{1}, S_{2}, \ldots, S_{d+1}$ intersect and hence have a starshaped union. Furthermore, $T_{1} \cup S_{2} \cup \cdots \cup S_{d+1}=$ $\operatorname{conv}\left\{s_{1}, \ldots, s_{d+1}\right\}$ is convex and hence starshaped. However, $T_{1} \cap S_{2} \cap \ldots$ $\cap S_{d+1}=\varnothing$.

Acknowledgment

The author wishes to thank the referee for Lemma 1, which greatly simplifies and generalizes the proof of the theorem.

References

[^1]4. M. A. Krasnosel'skii, Sur un critère pour qu'un domaine soit étoilé, Mat. Sb. (N.S.) (61) 19 (1946), 309-310.
5. Steven R. Lay, Convex sets and their applications, John Wiley, New York, 1982.
6. F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964.

Department of mathematics, University of Oklahoma, Norman, Oklahoma 73019

[^0]: Received by the editors September 13, 1988 and, in revised form, March 20, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 52A35, 52A30; Secondary 52A20.

 Supported in part by NSF grant DMS-8705336.

[^1]: 1. Ludwig Danzer, Branko Grünbaum, and Victor Klee, Helly's theorem and its relatives, Convexity, Proc. Sympos. Pure Math., Vol. 7, Amer. Math. Soc., Providence, RI, 1962, pp. 101-180.
 2. V. L. Klee, On certain intersection properties of convex sets, Canad. J. Math. 3 (1951), 272-275.
 3. Krzysztof Kołodziejczyk, On starshapedness of the union of closed sets in R^{n}. Colloq. Math. 53 (1987), 193-197.
